精英家教网 > 高中数学 > 题目详情
11.已知球O的半径为1,则球O的表面积为_4π.

分析 直接代入球的表面积公式,即可得出结论.

解答 解:∵球的半径r=1,
∴球的表面积为4πr2=4π,
故答案为4π.

点评 本题主要考查球的表面积公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.△ABC中,内角A,B,C的对边分别为a,b,c,2sin2$\frac{A+B}{2}$=sinC+1.
(Ⅰ)求角C的大小;
(Ⅱ)若a=$\sqrt{2}$,c=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.计算(-3+4i)(1-2i)2(其中 i为虚数单位)的结果为(  )
A.-25B.-7C.7D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设$a={log_2}3+{log_2}\sqrt{3},b={log_2}9-{log_2}\sqrt{3},c={log_{\sqrt{2}}}\sqrt{3}$,则a,b,c的大小关系是(  )
A.a=b<cB.a=b>cC.a<b<cD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,平面四边形ABCD中,AB=$\sqrt{3}$,AD=DC=CB=1.
(1)若∠A=60°,求cosC.
(2)若△ABD和△BCD的面积分别为S、T,求S2+T2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知一椭圆的对称轴为坐标轴且与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有相同的焦点,并且经过点(3,-2),则此椭圆的方程为(  )
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{10}$=1D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{15}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=-3sin($\frac{1}{2}$x+$\frac{π}{4}$)的周期,振幅,初相分别是(  )
A.$\frac{π}{4}$,3,$\frac{π}{4}$B.4π,-3,-$\frac{π}{4}$C.4π,3,$\frac{π}{4}$D.2π,3,$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与抛物线C的交点为Q,且|QF|=$\frac{5}{4}$|PQ|.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦点F1与抛物线C的焦点重合,且离心率为$\frac{1}{2}$•
(1)求抛物线C和椭圆E的方程;
(2)若过椭圆E的左焦点F2的直线l与椭圆交于A、B两点,求三角形OAB(O为坐标原点)的面积S△OAB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图是一个几何体的三视图.
(1)写出这个几何体的名称;
(2)根据所示数据计算这个几何体的表面积;
(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请求出这个路线的最短路程.

查看答案和解析>>

同步练习册答案