精英家教网 > 高中数学 > 题目详情
7.已知A=$\left\{{\left.x\right|\frac{1}{27}<3_{\;}^{-x}<\frac{1}{9}}\right\}$,B={x|log2(x-2)<1},则∁UA∩B=[3,4).

分析 化简集合A和B,并根据补集的定义求出∁UA,继而求出∁UA∩B.

解答 解:∵$\frac{1}{27}$<3-x<$\frac{1}{9}$,
∴($\frac{1}{3}$)3<($\frac{1}{3}$)x<($\frac{1}{3}$)2
∴2<x<3,
∴A=(2,3),
∴∁UA=(-∞,2]∪[3,+∞)
∵log2(x-2)<1=log22,
∴$\left\{\begin{array}{l}{x-2>0}\\{x-2<2}\end{array}\right.$,
解得2<x<4,
∴B=(2,4),
∴∁UA∩B=[3,4)
故答案为[3,4).

点评 本题考查集合的混合运算,解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{-1,x≤-1}\\{x,-1<x<1}\\{1,x≥1}\end{array}\right.$,函数g(x)=ax2-x+1,若函数y=f(x)-g(x)恰好有2个不同零点,则实数a的取值范围是(  )
A.(0,+∞)B.(-∞,0)∪(2,+∞)C.(-∞,-$\frac{1}{2}$)∪(1,+∞)D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的前n项和为Sn,若S1,2S2,3S3成等差数列,且S4=$\frac{40}{27}$.
(1)求数列{an}的通项公式;
(2)求证:Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若{1,2,3}?⊆A⊆{1,2,3,4,5},则集合A的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z满足(3+i)z=4-2i,则复数z=(  )
A.1-iB.1+iC.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“直线x-y+k=0与圆(x-1)2+y2=2有两个不同的交点”的充要条件是(  )
A.k∈(-3,1)B.k∈[-3,1]C.k∈(0,1)D.k∈(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=\sqrt{3}sin(2x-\frac{π}{6})-2{sin^2}(x-\frac{π}{12})$.
(Ⅰ)求函数f(x)的周期及增区间;
(Ⅱ)若 $-\frac{π}{12}≤x≤\frac{π}{3}$,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x2,3x+1,-2},B={x-5,3-x,16},C={x||m|x=1,m∈R},
且A∩B={16}.
(1)求A∪B; 
(2)若C⊆(A∩B),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{1}{{x}^{2}}$(x∈R)的值域是(  )
A.(-∞,0)B.(0,+∞)C.(-∞,0)∪(0,+∞)D.R

查看答案和解析>>

同步练习册答案