¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©´æÔÚʵÊý¦Á£¬Ê¹sin¦Ácos¦Á=1£»
£¨2£©´æÔÚʵÊý¦Á£¬Ê¹sin¦Á+cos¦Á=
3
2
£»
£¨3£©º¯Êýy=sin(
5¦Ð
2
-2x)
ÊÇżº¯Êý£»
£¨4£©·½³Ìx=
¦Ð
6
ÊǺ¯Êýy=cos(x-
¦Ð
6
)
ͼÏóµÄÒ»Ìõ¶Ô³ÆÖá·½³Ì£»
£¨5£©Èô¦Á£¬¦ÂÊǵÚÒ»ÏóÏ޽ǣ¬ÇÒ¦Á£¾¦Â£¬Ôòtan¦Á£¾tan¦Â£®
£¨6£©°Ñº¯Êýy=cos(2x+
¦Ð
12
)
µÄͼÏóÏòÓÒƽÒÆ
¦Ð
12
¸öµ¥Î»£¬ËùµÃµÄº¯Êý½âÎöʽΪy=cos(2x-
¦Ð
12
)

ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
 
£®£¨×¢£º°ÑÄãÈÏΪÕýÈ·µÄÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©
·ÖÎö£º£¨1£©ÀûÓöþ±¶½Ç¹«Ê½¿ÉµÃsin2¦Á=2£¾1£¬£¨2£©ÀûÓÃÁ½½ÇºÍµÄÕýÏÒ¹«Ê½¿ÉµÃ£¬
2
sin(¦Á+
¦Ð
4
)=
3
2
4
£¾1
£¨3£©ÏÈÀûÓÃÓÕµ¼¹«Ê½»¯¼ò£¬È»ºó¸ù¾Ýżº¯ÊýµÄ¶¨ÒåÅжϣ¨4£©Çó³öº¯ÊýµÄ¶Ô³ÆÖᣬ°Ñx=
¦Ð
6
´úÈë¼ìÑ飨5£©¾Ù·´Àý¦Â=
¦Ð
6
£¬¦Á=
13
6
¦Ð
£¨6£©¸ù¾Ýº¯ÊýµÄƽÒÆ·¨Ôò×ó¼ÓÓÒ¼õ¿ÉµÃ£®
½â´ð£º½â£¨1£©sin¦Ácos¦Á=1?
1
2
sin2¦Á=1?sin2¦Á=2£¾1¹Ê£¨1£©´íÎó
£¨2£©sin¦Á+cos¦Á=
3
2
?
2
sin(¦Á+
¦Ð
4
)=
3
2
?sin(¦Á+
¦Ð
4
)=
3
2
4
£¾1¹Ê£¨2£©´íÎó
£¨3£©y=sin(
5¦Ð
2
-2x)=cos2x
ÊÇżº¯Êý£¬¹Ê£¨3£©ÕýÈ·
£¨4£©y=cos£¨x-
¦Ð
6
£©µÄ¶Ô³ÆÖáÊÇx-
¦Ð
6
=k¦Ð?x=
¦Ð
6
+k¦Ð£¨£¬k¡ÊZ£©¹Ê£¨4£©ÕýÈ·
£¨5£©ÀýÈ磺¦Â=
¦Ð
6
£¬¦Á=
13¦Ð
6
£¬¶øtan¦Á=tan¦Â¹Ê£¨5£©´íÎó
£¨6£©°Ñº¯Êýy=cos(2x+
¦Ð
12
)
µÄͼÏóÏòÓÒƽÒÆ
¦Ð
12
¸öµ¥Î»£¬ËùµÃµÄº¯Êý½âÎöʽΪy=cos[2£¨x-
¦Ð
12
£©+
¦Ð
12
]¼´Îªy=cos(2x-
¦Ð
12
)
£¬¹Ê£¨6£©ÕýÈ·
¹Ê´ð°¸Îª£º£¨3£©£¨4£©£¨6£©
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÈý½Çº¯ÊýµÄ¶þ±¶½Ç¹«Ê½£¬Á½½ÇºÍµÄÕýÏÒ¹«Ê½£¬ÕýÏÒº¯ÊýµÄÖµÓò-1¡Üsinx¡Ü1£¬ÕýÓàÏÒº¯ÊýµÄ¶Ô³ÆÐÔ£¬º¯ÊýƽÒÆ·¨Ôò£®½â¾ö±¾ÌâµÄ¹Ø¼üÊÇÊìÁ·µÄÕÆÎÕÈý½Çº¯ÊýµÄÏà¹ØÐÔÖÊ£¬Áé»îÔËÓÃÐÔÖÊ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©ÒÑÖª¿Éµ¼º¯Êýf£¨x£©£¬x¡ÊD£¬Ôòº¯Êýf£¨x£©ÔÚµãx0´¦È¡µÃ¼«ÖµµÄ³ä·Ö²»±ØÒªÌõ¼þÊÇf¡ä£¨x0£©=0£¬x0¡ÊD£®
£¨2£©ÒÑÖªÃüÌâP£º?x¡ÊR£¬sinx¡Ü1£¬Ôò©Vp£º?x¡ÊR£¬sinx£¾1£®
£¨3£©ÒÑÖªÃüÌâp£º
1
x 2-3x+2
£¾0
£¬Ôò©Vp£º
1
x 2-3x+2
¡Ü0
£®
£¨4£©¸ø¶¨Á½¸öÃüÌâP£º¶ÔÈÎÒâʵÊýx¶¼ÓÐax2+ax+1£¾0ºã³ÉÁ¢£»Q£º¹ØÓÚxµÄ·½³Ìx2-x+a=0ÓÐʵÊý¸ù£®Èç¹ûP¡ÄQΪ¼ÙÃüÌ⣬P¡ÅQΪÕæÃüÌ⣬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ(-¡Þ£¬0)¡È(
1
4
£¬4)
£®
ÆäÖÐËùÓÐÕæÃüÌâµÄ±àºÅÊÇ
£¨2£©£¬£¨4£©
£¨2£©£¬£¨4£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÍòÖÝÇøһģ£©ÒÑÖªº¯Êýf£¨x£©=|x2-2ax+b|£¨x¡ÊR£©£¬¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©f£¨x£©²»¿ÉÄÜÊÇżº¯Êý£»
£¨2£©µ±f£¨0£©=f£¨2£©Ê±£¬f£¨x£©µÄͼÏó±Ø¹ØÓÚÖ±Ïßx=1¶Ô³Æ£»
£¨3£©Èôa2-b¡Ü0£¬Ôòf£¨x£©ÔÚÇø¼ä[a£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£»
£¨4£©f£¨x£©ÓÐ×îСֵb-a2£®
ÆäÖÐÕýÈ·µÄÃüÌâµÄÐòºÅÊÇ
£¨3£©
£¨3£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÃüÌ⣺¢Ùy=1ÊÇÃݺ¯Êý£»¢Úº¯Êýy=|x+2|-2xÔÚRÉÏÓÐ3¸öÁãµã£»¢Û
x-1
(x-2)¡Ý0
µÄ½â¼¯Îª[2£¬+¡Þ£©£»¢Üµ±n¡Ü0ʱ£¬Ãݺ¯Êýy=xnµÄͼÏóÓëÁ½×ø±êÖá²»Ïཻ£»ÆäÖÐÕýÈ·µÄÃüÌâÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ij°à¼¶ÓÐÄÐÉú20ÈË£¬Å®Éú30ÈË£¬´ÓÖгéÈ¡10¸öÈ˵ÄÑù±¾£¬Ç¡ºÃ³éµ½ÁË4¸öÄÐÉú¡¢6¸öÅ®Éú£®¸ø³öÏÂÁÐÃüÌ⣺
£¨1£©¸Ã³éÑù¿ÉÄÜÊǼòµ¥µÄËæ»ú³éÑù£»
£¨2£©¸Ã³éÑùÒ»¶¨²»ÊÇϵͳ³éÑù£»
£¨3£©¸Ã³éÑùÅ®Éú±»³éµ½µÄ¸ÅÂÊ´óÓÚÄÐÉú±»³éµ½µÄ¸ÅÂÊ£®
ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèa1£¬a2£¬a3£¬a4ÊǵȲîÊýÁУ¬ÇÒÂú×ã1£¼a1£¼3£¬a3=4£¬Èôbn=2an£¬¸ø³öÏÂÁÐÃüÌ⣺£¨1£©b1£¬b2£¬b3£¬b4ÊÇÒ»¸öµÈ±ÈÊýÁУ» £¨2£©b1£¼b2£» £¨3£©b2£¾4£» £¨4£©b4£¾32£» £¨5£©b2b4=256£®ÆäÖÐÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸