精英家教网 > 高中数学 > 题目详情

【题目】1是由正方形,直角梯形,三角形组成的一个平面图形,其中,将其沿折起使得重合,连接,如图2.

1)证明:图2中的四点共面,且平面平面

2)求图2中的点到平面的距离.

【答案】1)见解析(2

【解析】

1)由平行的传递性可证得,即可说明四点共面;由和直角梯形可知,利用线面垂直的判定定理可证得平面,进而,分别在直角梯形和直角梯形中由勾股定理求得,再由勾股定理逆定理可知,从而平面,即可证得平面平面.

2)计算等腰直角三角形边上的高,由线面平行的性质可知,点到平面的距离,分别计算三角形的面积的面积,由等体积法构建方程,可求得点到平面的距离.

1 证明:因为正方形中,,梯形中, 所以

所以四点共面;

因为 所以 因为

所以平面

因为平面 所以

在直角梯形中,,可求得

同理在直角梯形中,可求得

又因为

由勾股定理逆定理可知

因为 所以平面

因为平面

故平面平面 即平面平面.

2)在等腰直角三角形中,边上的高为1 所以点到平面的距离等于1

因为与平面平行, 所以点到平面的距离

三角形的面积

中,边上的高为

又因为的面积

设点到平面的距离为,由三棱锥的体积

故点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四川省阆中中学某部根据运动场地的影响,但为尽大可能让学生都参与到运动会中来,在2018春季运动会中设置了五个项目,其中属于跑步类的两项,分别是200米和400米,另外三项分别为跳绳、跳远、跳高学校要求每位学生必须参加,且只参加其中一项,学校780名同学参加各运动项目人数统计如下条形图:

其中参加跑步类的人数所占频率为,为了了解学生身体健康与参加运动项目之间的关系,用分层抽样的方法从这780名学生中抽取13人进行分析.

1求条形图中mn的值以及抽取的13人中参加200米的学生人数;

2现从抽取的参加400米和跳绳两个项目中随机抽取4人,记其中参加400米跑的学生人数为X,求离散型随机变量X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等腰梯形ABCD中,已知ABADCD1BC2,将ABD沿直线BD翻折成ABD,如图,则直线BACD所成角的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】京剧是我国的国粹,是国家级非物质文化遗产,为纪念著名京剧表演艺术家,京剧艺术大师梅兰芳先生,某电视台《我爱京剧》的一期比赛中,2梅派传人和4位京剧票友(资深业余爱好者)在幕后登台演唱同一曲目《贵妃醉酒》选段,假设6位演员的演唱水平相当,由现场40位大众评委和梅派传人的朋友猜测哪两位是真正的梅派传人.

1)此栏目编导对本期的40位大众评委的年龄和对京剧知识的了解进行调查,根据调查得到的数据如下:

京剧票友

一般爱好者

合计

50岁以上

15

10

25

50岁以下

3

12

15

合计

18

22

40

试问:在犯错误的概率不超过多少的前提下,可以认为年龄的大小与对京剧知识的了解有关系?

2)若在一轮中演唱中,每猜出一位亮相一位,且规定猜出2梅派传人或猜出5人后就终止,记本轮竞猜一共竞猜次,求随机变量的分布列与期望.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.706

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知抛物线C:的焦点为F,过F的直线交抛物线C于A,B两点.

(1)求线段AF的中点M的轨迹方程;

(2)已知△AOB的面积是△BOF面积的3倍,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】变换T1是逆时针旋转角的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2

1)点P(21)经过变换T1得到点P',求P'的坐标;

2)求曲线yx2先经过变换T1,再经过变换T2所得曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为厦门市2018年国庆节7天假期的楼房认购量与成交量的折线图,请你根据折线图对这7天的认购量(单位:套)与成交量(单位:套),则下列选项中正确的是(

A.日成交量的中位数是10

B.日成交量超过日平均成交量的有2

C.认购量与日期正相关

D.107日认购量的增长率小于107日成交量的增长率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆C)的左、右焦点分别为,直线l交椭圆CAB两点,且的周长为8.

1)求椭圆C的方程;

2)若线段的中点为P,直线与椭圆C交于MN两点,且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆C:(>>0)的右焦点为F(10),且过点(1),过点F且不与轴重合的直线与椭圆C交于AB两点,点P在椭圆上,且满足.

(1)求椭圆C的标准方程;

(2),求直线AB的方程.

查看答案和解析>>

同步练习册答案