精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆C:(>>0)的右焦点为F(10),且过点(1),过点F且不与轴重合的直线与椭圆C交于AB两点,点P在椭圆上,且满足.

(1)求椭圆C的标准方程;

(2),求直线AB的方程.

【答案】(1) (2) .

【解析】

1代入椭圆方程,结合关系,即可求出椭圆标准方程;

2)设直线方程,与椭圆联立,利用韦达定理,得出两点的坐标关系,进而求出点坐标,代入椭圆方程,即可求出直线方程.

(1)由题意可知,=1,且

又因为

解得

所以椭圆C的标准方程为

(2)若直线AB的斜率不存在,则易得

,得P(0)

显然点P不在椭圆上,舍去;

因此设直线的方程为,设

将直线的方程与椭圆C的方程联立

整理得

则由

P点坐示代入椭圆C的方程,

(*)

代入等式(*)

因此所求直线AB的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1是由正方形,直角梯形,三角形组成的一个平面图形,其中,将其沿折起使得重合,连接,如图2.

1)证明:图2中的四点共面,且平面平面

2)求图2中的点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,平面ABCD,底面ABCD是等腰梯形,

1)证明:平面PAC

2)若,设,且,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为菱形的边的中点,将菱形沿对角线折起,使点不在平面内,则在翻折过程中,以下命题正确的是___________.(写出所有正确命题的序号)

平面;②异面直线所成的角为定值;③在二面角逐渐渐变小的过程中,三棱锥的外接球半径先变小后变大;④若存在某个位程,使得直线与直线垂直,则的取值范围是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A02),动点M到点A的距离比动点M到直线y=﹣1的距离大1,动点M的轨迹为曲线C

1)求曲线C的方程;

2Q为直线y=﹣1上的动点,过Q做曲线C的切线,切点分别为DE,求△QDE的面积S的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)当时,求函数在点处的切线方程;

(Ⅱ)设函数的导函数是,若不等式对于任意的实数恒成立,求实数的取值范围;

(Ⅲ)设函数是函数的导函数,若函数存在两个极值点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】欲设计如图所示的平面图形,它由上、下两部分组成,其中上部分是弓形(圆心为,半径为),下部分是矩形.

1)若,求该平面图形的周长的最大值;

2)若,试确定的值,使得该平面图形的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形所在平面垂直于直角梯所在平面,平面平面,且,且.

(1)设点为棱中点,在内是否存在点,使得平面?若存在,请证明,若不存在,说明理由

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从2011年到2018年参加“北约”,“华约”考试而获得加分的学生(每位学生只能参加“北约”,“华约”一种考试)人数可以通过以下表格反映出来.(为了方便计算,将2011年编号为12012年编号为2,依此类推……

年份x

1

2

3

4

5

6

7

8

人数y

2

3

4

4

7

7

6

6

1)据悉,该校2018年获得加分的6位同学中,有1位获得加20分,2位获得加15分,3位获得加10分,从该6位同学中任取两位,记该两位同学获得的加分之和为X,求X的分布列及期望.

2)根据最近五年的数据,利用最小二乘法求出yx之间的线性回归方程,并用以预测该校2019年参加“北约”,“华约”考试而获得加分的学生人数.(结果要求四舍五入至个位)

参考公式:

查看答案和解析>>

同步练习册答案