【题目】欲设计如图所示的平面图形,它由上、下两部分组成,其中上部分是弓形(圆心为
,半径为
,
,
),下部分是矩形
.
![]()
(1)若
,求该平面图形的周长的最大值;
(2)若
,试确定
的值,使得该平面图形的面积最大.
科目:高中数学 来源: 题型:
【题目】如图为厦门市2018年国庆节7天假期的楼房认购量与成交量的折线图,请你根据折线图对这7天的认购量(单位:套)与成交量(单位:套),则下列选项中正确的是( )
![]()
A.日成交量的中位数是10
B.日成交量超过日平均成交量的有2天
C.认购量与日期正相关
D.10月7日认购量的增长率小于10月7日成交量的增长率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆C:
(
>
>0)的右焦点为F(1,0),且过点(1,
),过点F且不与
轴重合的直线
与椭圆C交于A,B两点,点P在椭圆上,且满足
.
![]()
(1)求椭圆C的标准方程;
(2)若
,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足:
(常数
),
,(
,
).数列
满足:![]()
.
(1)分别求
,
,
的值:
(2)求数列
的通项公式;
(3)问:数列
的每一项能否均为整数?若能,求出
的所有可能值;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
.
(1)若
,判断函数
是否存在极值,若存在,求出极值:若不存在,说明理由:
(2)若
在
上恒成立,求实数
的取值范围:
(3)若函数
存在两个极值点
,证明:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形
中,
为
的中点,将
沿直线
翻折成
,连结
,
为
的中点,则在翻折过程中,下列说法中所有正确的是( )
![]()
A.存在某个位置,使得![]()
B.翻折过程中,
的长是定值
C.若
,则![]()
D.若
,当三棱锥
的体积最大时,三棱锥
的外接球的表面积是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点F到左顶点的距离为3.
(1)求椭圆C的方程;
(2)设O是坐标原点,过点F的直线与椭圆C交于A,B两点(A,B不在x轴上),若
,延长AO交椭圆与点G,求四边形AGBE的面积S的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com