精英家教网 > 高中数学 > 题目详情
设A=
11
41
,则矩阵A的一个特征值λ和对应的一个特征向量
a
为(  )
分析:先求出矩阵A的特征多项式,进而可求矩阵A的特征值.利用方程组可求相应的特征向量.
解答:解:矩阵A的一个特征多项式为f(λ)=
.
λ-1-1
-4λ-1
.
=(λ-1)2-4=(λ-3)(λ+1),令f(λ)=0,求得λ=3或λ=-1.
 (
1
2
)
 
当λ=3时,由
11
41
x
y
=3
x
y
,求得得A属于特征值3的特征向量为
a
=
1
2

当λ=-1时,由
11
41
x
y
=-1
x
y
,求得得A属于特征值3的特征向量为
β
=
1
-2

故选A.
点评:本题考查矩阵的性质和应用、特征值与特征向量的计算,解题时要注意特征值与特征向量的计算公式的运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
33
cd
,若矩阵A属于特征值6的一个特征向量为
α
=
1
1
,属于特征值1的一个特征向量为
β
=
&-2

(Ⅰ)求矩阵A;
(Ⅱ)判断矩阵A是否可逆,若可逆求出其逆矩阵A-1
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,圆M的参数方程为
x=2cosθ
y=-2+2sinθ
(其中θ为参数).
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4-5:不等式选讲,设函数f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果关于x的不等式f(x)≤2有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|1<x<2},B={x|x<a}满足A?B,则实数a的取值范围是
a≥2
a≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.
(1)选修4-2:矩阵与变换
已知矩阵A=
12
34

①求矩阵A的逆矩阵B;
②若直线l经过矩阵B变换后的方程为y=x,求直线l的方程.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
x=1+2cosα
y=-1+2sinα
(a为参数),点Q极坐标为(2,
7
4
π).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
(I)关于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范围.
(II)设x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建师大附中高二(下)期末数学试卷(理科)(解析版) 题型:选择题

设A=,则矩阵A的一个特征值λ和对应的一个特征向量为( )
A.λ=3,=(
B.λ=-1,=(
C.λ=3,
D.λ=-1,=(

查看答案和解析>>

同步练习册答案