精英家教网 > 高中数学 > 题目详情

【题目】已知函数,( 为实数),

1)讨论函数的单调区间;

2)求函数的极值;

3)求证:

【答案】(1)在上单调递增,在上单调递减(2)在取得极大值,其极大值为.3)详见解析

【解析】试题分析:(1)求导数得到,然后讨论a的符号,从而可判断导数符号,这样即可求出每种情况下函数fx)的单调区间;(2)可先求出函数gx)的定义域,然后求导,判断导数的符号,从而根据极值的概念求出函数gx)的极值;(3)可知a=1时,fx)在x=0处取得极小值,从而可得出,而由(2)可知gx)在x=1处取得极大值,也是最大值-1,这样即可得出lnx≤x-1x,这样便可得出要证的结论

试题解析:(1)由题意得

时, 恒成立,函数R上单调递增,

时,由可得,由可得

故函数上单调递增,在上单调递减.

2)函数的定义域为

可得;由,可得.

所以函数上单调递增,在上单调递减,

故函数取得极大值,其极大值为.

时, ,由(1)知, 处取得极小值,也是最小值,且,故,得到.

由(2)知, 处取得最大值,且

,得到.

综上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在四棱柱,侧棱底面 ,且 ,侧棱.

(1)若上一点,试确定点的位置,使平面

(2)在(1)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形垂直于正方形垂直于平面.且

(1)证明:面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在遂宁市中央商务区的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、2只白色的乒乓球(其体积,质地完全相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得统一颜色的3个球,摊主送个摸球者10元钱;若摸得非同一颜色的3个球。摸球者付给摊主2元钱。

(1)摸出的3个球中至少有1个白球的概率是多少?

(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,试比较的大小关系;

2)猜想的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过点,则

1)若直线lxy轴的正半轴分别交于AB两点,且OAB的面积为4,求直线l的方程;

2若直线l与原点距离为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列的前n项和为满足,公比大于1的等比数列满足 .

1求证数列是等差数列,并求其通项公式

2求数列的前n项和

3)在(2)的条件下,若对一切正整数n恒成立求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x) (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.

(1)k的值及f(x)的表达式;

(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率,左、右焦点分别为 ,点满足: 在线段的中垂线上.

(Ⅰ)求椭圆的方程;

(Ⅱ)若斜率为)的直线轴、椭圆顺次相交于点,且,求的取值范围.

查看答案和解析>>

同步练习册答案