精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=log3$\frac{x-1}{x+1}$,g(x)=-2ax+a+1,h(x)=f(x)+g(x).
(Ⅰ)当a=-1时,证明:h(x)为奇函数;
(Ⅱ)若关于x的方程f(x)=log3[g(x)]有两个不等实数根,求实数a的取值范围.

分析 (I)先求出h(x)的定义域是否对称,再计算h(-x)并化简,观察h(-x)和h(x)的关系得出结论;
(II)根据f(x)=log3[g(x)]得$\frac{x-1}{x+1}=-2ax+a+1$,化简为2ax2+ax-a-2=0,讨论a是否为0得出x2+$\frac{1}{2}$x-$\frac{1}{a}$-$\frac{1}{2}$=0,利用二次函数的性质得出a的范围.

解答 解:(I)证明:a=-1时,h(x)=log3$\frac{x-1}{x+1}$+2x,
由函数有意义得$\frac{x-1}{x+1}$>0,解得x<-1或x>1.
∴h(x)的定义域为(-∞,-1)∪(1,+∞),关于原点对称.
∵h(-x)=log3$\frac{-x-1}{-x+1}$-2x=log3$\frac{x+1}{x-1}$-2x=-h(x),
∴h(x)为奇函数.
(II)由f(x)=log3g(x)可得$\frac{x-1}{x+1}=-2ax+a+1$,
化简得,2ax2+ax-a-2=0,①
显然,当a=0时,方程①无解,不符合题意;
∴a≠0,由①得2a(x2+$\frac{1}{2}$x-$\frac{1}{a}$-$\frac{1}{2}$)=0
令F(x)=x2+$\frac{1}{2}$x-$\frac{1}{a}$-$\frac{1}{2}$,则F(x)=x2+$\frac{1}{2}$x-$\frac{1}{a}$-$\frac{1}{2}$在(-∞,-1)∪(1,+∞)内有两个零点,
∴$\left\{\begin{array}{l}{F(-1)<0}\\{F(1)<0}\end{array}\right.$,即$\left\{\begin{array}{l}{-\frac{1}{a}<0}\\{1-\frac{1}{a}<0}\end{array}\right.$,解得0<a<1.
∴a的取值范围是(0,1).

点评 本题考查了函数奇偶性的判断,函数零点的个数判断与函数图象的关系,二次函数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在圆x2+y2=9上任取一点P,过点P作x轴的垂线段PD,D为垂足,点M在线段DP上,满足$\frac{|DM|}{|DP|}$=$\frac{2}{3}$,当点P在圆上运动时,设点M的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若直线y=m(x+5)上存在点Q,使过点Q作曲线C的两条切线互相垂直,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,短轴长为2$\sqrt{3}$,点P为椭圆C上一点,且点P到点F的最远距离是最近距离的3倍.
(I)求椭圆C的方程;
(Ⅱ)设A为椭圆C的左顶点,过点F的直线l交椭圆C于D、E两点,直线AD、AE与直线x=4分别交于点M、N,试问:在x轴上是否存在定点Q,使得以MN为直径的圆过点Q?若存在,求出Q点坐标;若不存在,KH请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a,b,c分别为∠A、∠B、∠C、的对边,若a+c=2b,且$sinB=\frac{4}{5}$,当△ABC的面积为$\frac{3}{2}$时,则b=(  )
A.$\frac{{1+\sqrt{3}}}{2}$B.2C.4D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)为定义在R上的奇函数,且满足f(x)=f(x+4),f(1)=1,则f(-1)+f(8)=(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用两种语句写出求1 2+2 2+…+100 2的值的算法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.计算cos$\frac{π}{12}$sin$\frac{π}{12}$的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知命题p:方程x2-2x+m=0有两个不相等的实数根;命题q:关于x的函数y=(m+2)x-1是R上的单调增函数,若“p或q”是真命题,“p且q”是假命题,则实数m的取值范围为(-∞,-2]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆心在x轴正半轴上的圆C与直线5x+12y+21=0相切,与y轴交于M,N两点,且∠MCN=120°.
(1)求圆C的标准方程;
(2)过点P(0,2)的直线l与圆C交于不同的两点A,B,若设点G为△MNG的重心,当△MNG的面积为$\sqrt{3}$时,求直线l的方程.

查看答案和解析>>

同步练习册答案