分析 (1)可设圆C的方程为(x-a)2+y2=4a2,点C到直线5x+12y+21=0的距离为$d=\frac{|5a+21|}{13}=2a$,求出a,即可求圆C的标准方程;
(2)利用△MNG的面积为$\sqrt{3}$,得出|xG|=1,设A(x1,y1),B(x2,y2),则${x_G}=\frac{{{x_1}+{x_2}+0}}{3}$,即x1+x2=3xG,直线方程与圆的方程联立,即可得出结论.
解答
解:(1)由题意知圆心C(a,0),且a>0,
由∠MCN=120°,知Rt△MCO中,∠MCO=60°,|OC|=a,则|CM|=2a,
于是可设圆C的方程为(x-a)2+y2=4a2…(2分)
又点C到直线5x+12y+21=0的距离为$d=\frac{|5a+21|}{13}=2a$,
所以a=1或$a=-\frac{21}{31}$(舍),
故圆C的方程为(x-1)2+y2=4.…(4分)
(2)△MNG的面积$S=\frac{1}{2}|MN||{x_G}|=\sqrt{3}|{x_G}|=\sqrt{3}$,所以|xG|=1.
若设A(x1,y1),B(x2,y2),则${x_G}=\frac{{{x_1}+{x_2}+0}}{3}$,即x1+x2=3xG,…(6分)
当直线l斜率不存在时,△ABO不存在,
故可设直线l为y=kx+2,代入圆C的方程(x-1)2+y2=4中,
可得(1+k2)x2+(4k-2)x+1=0,…(8分)
则$\left\{\begin{array}{l}△>0\\{x_1}+{x_2}=\frac{2-4k}{{1+{k^2}}}\end{array}\right.$,即$\left\{\begin{array}{l}k<0或k>\frac{4}{3}\\{x_1}+{x_2}=\frac{2-4k}{{1+{k^2}}}=±3\end{array}\right.$…(10分)
得k=-1或$k=-\frac{1}{3}$,
故满足条件的直线l的方程为y=-x+2或$y=-\frac{1}{3}x+2$.…(12分)
点评 本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | 4 | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{3\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com