精英家教网 > 高中数学 > 题目详情
15.在直三棱柱ABC-A1B1C1中,AB=BC=1,AC=$\sqrt{2}$,BB1=2,点M为BB1的中点,则点A到平面A1CM距离为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3\sqrt{2}}{2}$

分析 以B为原点,BA为x轴,BC为y轴,BB1为z轴,建立空间直角坐标系,利用向量法能求出点A到平面A1CM距离.

解答 解:∵直三棱柱ABC-A1B1C1中,AB=BC=1,AC=$\sqrt{2}$,
∴BC2+AB2=AC2,∴AB⊥BC,
以B为原点,BA为x轴,BC为y轴,BB1为z轴,建立空间直角坐标系,
∵BB1=2,∴A(1,0,0),A1(1,0,2),C(0,1,0),
M(0,0,1),
$\overrightarrow{M{A}_{1}}$=(1,0,1),$\overrightarrow{MC}$=(0,1,-1),$\overrightarrow{MA}$=(1,0,-1),
设平面A1CM的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{M{A}_{1}}=x+z=0}\\{\overrightarrow{n}•\overrightarrow{MC}=y-z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,-1),
∴点A到平面A1CM距离d=$\frac{|\overrightarrow{n}•\overrightarrow{MA}|}{|\overrightarrow{n}|}$=$\frac{2}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$.
故选:B.

点评 本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.计算cos$\frac{π}{12}$sin$\frac{π}{12}$的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=5sinxcosx-5$\sqrt{3}{cos^2}x+\frac{{5\sqrt{3}}}{2}$
求:(1)函数f(x)的最小正周期;
(2)函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆心在x轴正半轴上的圆C与直线5x+12y+21=0相切,与y轴交于M,N两点,且∠MCN=120°.
(1)求圆C的标准方程;
(2)过点P(0,2)的直线l与圆C交于不同的两点A,B,若设点G为△MNG的重心,当△MNG的面积为$\sqrt{3}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数y=log${\;}_{\frac{1}{2}}$(x2-4tx+4t2+t+$\frac{1}{t-1}$)(t∈R)的定义域R,且y的最大值为f(t),则f(t)的值域是$(-∞,lo{g}_{\frac{1}{2}}3]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.PA、PB、PC是从P点引出的三条射线,每两条的夹角为60°,则直线PC与平面APB所成角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F1、F2为椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的左、右焦点,过F1且垂直于F1F2的直线交椭圆于A,B两点,则线段AB的长是$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题p:?x∈R,|x|<0的否定是?x∈R,|x|≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.质检过后,某校为了解理科班学生的数学、物理学习情况,利用随机数表法从全年级600名理科生抽取100名学生的成绩进行统计分析,已知学生考号的后三位分别为000,001,002,…,599.
(1)若从随机数表的第5行第7列的数开始向右读,请依次写出抽取的前7人的后三位考号;
(2)如果题(1)中随机抽取到的7名同学的数学、物理成绩(单位:分)对应如表:
数学成绩9097105113127130135
物理成绩105116120127135130140
从这7名同学中随机抽取3名同学,记这3名同学中数学和物理成绩均为优秀的人数为ζ,求ζ的分布列和数学期望(规定成绩不低于120分的为优秀).附:(下面是摘自随机数表的第4行到第6行)

查看答案和解析>>

同步练习册答案