精英家教网 > 高中数学 > 题目详情

已知数列满足:
(1)求的值;
(2)求证:数列是等比数列;
(3)令),如果对任意,都有,求实数的取值范围.

(1);(2)是以为首相为公比的等比数列;
(3)

解析试题分析:(1)利用赋值法,令可求
(2)将等式写到,再将得到的式子与已知等式联立,两式再相减,根据等比数列的定,可证明是以为首相为公比的等比数列;
(3)由(2)可写出,利用数列的单调性当时,,当时,,因此,数列的最大值为,则可解的的范围. 
试题解析:(1) 
(2)由题可知:           ①
       ②
②-①可得  即:,又
∴数列是以为首项,以为公比的等比数列
(3)由(2)可得,   
可得
可得,所以
有最大值 
所以,对任意,有
如果对任意,都有,即成立,
,故有:,解得
∴实数的取值范围是
考点:1、赋值法求值;2、等比数列的定义;3、方程思想;4、数列的单调性、最值;5、恒成立问题、不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=3x+1上,n∈N*.
(1)当实数t为何值时,数列{an}是等比数列?
(2)在(1)的结论下,设bn=log4an+1,cn=an+bn,Tn是数列{cn}的前n项和,求Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}的前n项和记为Sna1t,点(Snan+1)在直线y=2x+1上,n∈N*.
(1)当实数t为何值时,数列{an}是等比数列?
(2)在(1)的结论下,设bn=log3an+1Tn是数列的前n项和, 求T2 013的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的首项为),前项和为,且).设).
(1)求数列的通项公式;
(2)当时,若对任意恒成立,求的取值范围;
(3)当时,试求三个正数的一组值,使得为等比数列,且成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设无穷等比数列的公比为q,且表示不超过实数的最大整数(如),记,数列的前项和为,数列的前项和为.
(Ⅰ)若,求
(Ⅱ)证明: )的充分必要条件为
(Ⅲ)若对于任意不超过的正整数n,都有,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6.
(1)求数列{an}的通项公式;
(2)设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和是,且.求数列的通项公式;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点(1,)是函数)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足=+).
(1)求数列的通项公式;
(2)求数列{项和为,问>的最小正整数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,.
(1)求数列的通项公式;
(2)若数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案