精英家教网 > 高中数学 > 题目详情
7.若函数f(x)=$\left\{\begin{array}{l}{x+{2}^{x},x≤0}\\{\frac{x}{a}-lnx,x>0}\end{array}\right.$,在其定义域上恰有两个零点,则正实数a的值为e.

分析 根据函数图象可知f(x)在(-∞,0]上有1个零点,故f(x)在(0,+∞)上有1个零点,根据导数的几何意义求出a即可.

解答 解:当x≤0时,令f(x)=0得2x=-x,
作出y=2x与y=-x的函数图形如图所示:

由图象可知f(x)在(-∞,0]上有唯一一个零点.
∵f(x)有两个零点,
∴f(x)在(0,+∞)上有唯一一个零点.

∴直线y=$\frac{x}{a}$与曲线y=lnx相切,设切点坐标为(x0,y0),
则$\left\{\begin{array}{l}{{y}_{0}=\frac{{x}_{0}}{a}}\\{{y}_{0}=ln{x}_{0}}\\{\frac{1}{{x}_{0}}=\frac{1}{a}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{0}=e}\\{{y}_{0}=1}\\{a=e}\end{array}\right.$.
故答案为:e.

点评 本题考查了函数零点与函数图象的关系,导数的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在区间[0,4]上随机取两个数x,y,则xy∈[0,4]的概率是(  )
A.$\frac{2-ln4}{4}$B.$\frac{3-2ln4}{4}$C.$\frac{1+ln4}{4}$D.$\frac{1+2ln4}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义域为R的奇函数f(x)满足f(3-x)+f(x)=0,且当$x∈({-\frac{3}{2},0})$时,f(x)=log2(2x+7),则f(2017)=(  )
A.-2B.log23C.3D.-log25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.向量$\overrightarrow a=(\frac{1}{2},\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$,$\overrightarrow b=(1,y)$,已知$\overrightarrow a∥\overrightarrow b$,且有函数y=f(x).
(1)求函数y=f(x)的周期;
(2)已知锐角△ABC的三个内角分别为A,B,C,若有$f(A-\frac{π}{3})=\sqrt{3}$,边BC=$\sqrt{7}$,sinB=$\frac{{\sqrt{21}}}{7}$,求AC的长及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=x2+(x-1)|x-a|+3(a∈R).
(1)若函数f(x)在R上单调递增,求a的取值范围;
(2)若对?x∈R,不等式f(x)≥2x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx,g(x)=kx2-ax,其中k,a为实数.
(1)若k=1,a=0,求方程f(x)+g(x)=0的零点个数;
(2)若a=0,实数k使得f(x)<g(x)恒成立,求k的取值范围;
(3)若k=1,试讨论函数h(x)=|g(x)|-f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“?m∈[0,1],x+$\frac{1}{x}$≥2”的否定形式是(  )
A.?m∈[0,1],x+$\frac{1}{x}$<2B.?m∈[0,1],x+$\frac{1}{x}$≥2
C.?m∈(-∞,0)∪(0,+∞),x+$\frac{1}{x}$≥2D.?m∈[0,1],x+$\frac{1}{x}$<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F是椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的左焦点,设动点P在椭圆上,若直线FP的斜率大于$\sqrt{3}$,则直线OP(O为原点)的斜率的取值范围是(  )
A.$({-∞,-\frac{3}{2}})$B.$({-∞,-\frac{3}{2}}]∪({\frac{{3\sqrt{3}}}{8},\frac{3}{2}}]$C.$({-∞,-\frac{3}{2}})∪({\frac{{3\sqrt{3}}}{8},\frac{3}{2}})$D.$[{-\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}中,a1=5,a2=11,且{an-2}是等比数列.
(1)求数列{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案