精英家教网 > 高中数学 > 题目详情
19.命题“?m∈[0,1],x+$\frac{1}{x}$≥2”的否定形式是(  )
A.?m∈[0,1],x+$\frac{1}{x}$<2B.?m∈[0,1],x+$\frac{1}{x}$≥2
C.?m∈(-∞,0)∪(0,+∞),x+$\frac{1}{x}$≥2D.?m∈[0,1],x+$\frac{1}{x}$<2

分析 利用全称命题的否定是特称命题,写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,命题“?m∈[0,1],x+$\frac{1}{x}$≥2”的否定形式是:?m∈[0,1],x+$\frac{1}{x}$<2.
故选:D.

点评 本题考查特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.非零实数a,b满足tanx=x,且a2≠b2,则(a-b)sin(a+b)-(a+b)sin(a-b)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={0,1,2},B={x|x2-5x+4<0},则A∩(∁RB)的真子集个数为(  )
A.1B.3C.4D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=$\left\{\begin{array}{l}{x+{2}^{x},x≤0}\\{\frac{x}{a}-lnx,x>0}\end{array}\right.$,在其定义域上恰有两个零点,则正实数a的值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,在平面四边形ABCD中,已知∠A=$\frac{π}{2}$,∠B=$\frac{2π}{3}$,AB=6.在AB边上取点E使得BE=1,连结EC,ED,若∠CED=$\frac{2π}{3}$,EC=$\sqrt{7}$.则CD=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=-2,则|2$\overrightarrow{a}-\overrightarrow{b}$|=(  )
A.2B.2$\sqrt{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11..圆C:x2+y2-2x-4y-20=0,直线l:(2m+1)x+(m+1)y-7m-4=0
(1)已知直线l过定点M,求定点M的坐标;
(2)求直线l被圆C截得的弦长最短时m的值以及最短长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(3,x),若$\overrightarrow{a}$•$\overrightarrow{b}$=3,则x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列关于命题的说法错误的是(  )
A.“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件
B.命题“若随机变量X~N(1,4),P(X≤0)=m,则P(0<X<2)=1-2m”为真命题
C.命题“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”
D.若命题P:?n∈N,2n>1000,则?P:?n∈N,2n>1000

查看答案和解析>>

同步练习册答案