分析 (1)利用直线系化简,通过解方程求解定点坐标.
(2)求出圆的圆心与半径,判断弦长最小值的位置,求解即可.
解答 解:(1)直线l:(2m+1)x+(m+1)y-7m-4=0化为:(2x+y-7)m+(x+y-4)=0,
可得$\left\{\begin{array}{l}{2x+y-7=0}\\{x+y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ 即M(3,1)…(5分)
(2)圆C的圆心C(1,2),半径r=5.设直线l与圆C相交于点A,B,则当AB⊥CM时,弦AB最短.
直线l:(2m+1)x+(m+1)y-7m-4=0的斜率为:$-\frac{2m+1}{m+1}$=-$\frac{1}{{k}_{CM}}$=-$\frac{1-3}{2-1}$=2,解得m=$-\frac{3}{4}$.
此时d=CM=$\sqrt{5}$,|AB|min=2$\sqrt{{r}^{2}-{d}^{2}}$=4$\sqrt{5}$…(10分)
点评 本题考查直线与圆的位置关系的应用,直线系方程的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 若p为真,则¬(¬p)也为真 | |
| B. | 若“p∧q为真”,则“p∨q为真”为真命题 | |
| C. | ?x∈R,使得tanx=2017 | |
| D. | “2x>$\frac{1}{2}$”是“log${\;}_{\frac{1}{2}}$x<0”的充分不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?m∈[0,1],x+$\frac{1}{x}$<2 | B. | ?m∈[0,1],x+$\frac{1}{x}$≥2 | ||
| C. | ?m∈(-∞,0)∪(0,+∞),x+$\frac{1}{x}$≥2 | D. | ?m∈[0,1],x+$\frac{1}{x}$<2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-∞,-\frac{3}{2}})$ | B. | $({-∞,-\frac{3}{2}}]∪({\frac{{3\sqrt{3}}}{8},\frac{3}{2}}]$ | C. | $({-∞,-\frac{3}{2}})∪({\frac{{3\sqrt{3}}}{8},\frac{3}{2}})$ | D. | $[{-\frac{3}{2},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com