精英家教网 > 高中数学 > 题目详情
10.已知集合A={0,1,2},B={x|x2-5x+4<0},则A∩(∁RB)的真子集个数为(  )
A.1B.3C.4D.7

分析 运用二次不等式的解法,化简集合B,运用交集、补集的定义,再由真子集的求法,即可得到所求个数.

解答 解:集合A={0,1,2},
B={x|x2-5x+4<0}={x|1<x<4},
则A∩(∁RB)={0,1,2}∩{x≥4或x≤1}={0,1},
真子集为∅,{0},{1}.共3个.
故选:B.

点评 本题考查集合的运算,主要是交集、补集的求法,考查真子集的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若an+1=2an+1(n=1,2,3,…).且a1=1.
(1)求a2,a3,a4,a5
(2)归纳猜想通项公式an并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列选项中,错误的是(  )
A.若p为真,则¬(¬p)也为真
B.若“p∧q为真”,则“p∨q为真”为真命题
C.?x∈R,使得tanx=2017
D.“2x>$\frac{1}{2}$”是“log${\;}_{\frac{1}{2}}$x<0”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义域为R的奇函数f(x)满足f(3-x)+f(x)=0,且当$x∈({-\frac{3}{2},0})$时,f(x)=log2(2x+7),则f(2017)=(  )
A.-2B.log23C.3D.-log25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合M={0,1},集合N满足M∪N={0,1},则集合N共有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.向量$\overrightarrow a=(\frac{1}{2},\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)$,$\overrightarrow b=(1,y)$,已知$\overrightarrow a∥\overrightarrow b$,且有函数y=f(x).
(1)求函数y=f(x)的周期;
(2)已知锐角△ABC的三个内角分别为A,B,C,若有$f(A-\frac{π}{3})=\sqrt{3}$,边BC=$\sqrt{7}$,sinB=$\frac{{\sqrt{21}}}{7}$,求AC的长及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=x2+(x-1)|x-a|+3(a∈R).
(1)若函数f(x)在R上单调递增,求a的取值范围;
(2)若对?x∈R,不等式f(x)≥2x恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“?m∈[0,1],x+$\frac{1}{x}$≥2”的否定形式是(  )
A.?m∈[0,1],x+$\frac{1}{x}$<2B.?m∈[0,1],x+$\frac{1}{x}$≥2
C.?m∈(-∞,0)∪(0,+∞),x+$\frac{1}{x}$≥2D.?m∈[0,1],x+$\frac{1}{x}$<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设x>0,y>0,z>0,xyz=1,求证:$\frac{1}{{x}^{3}y}$+$\frac{1}{{y}^{3}z}$+$\frac{1}{{z}^{3}x}$≥$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$.

查看答案和解析>>

同步练习册答案