精英家教网 > 高中数学 > 题目详情
设函数f(x)=-
1
3
x3+2ax2-3a2x+1(0<a<1)

(Ⅰ)求函数f(x)的极大值;
(Ⅱ)记f(x)的导函数为g(x),若x∈[1-a,1+a]时,恒有-a≤g(x)≤a成立,试确定实数a的取值范围.
(Ⅰ)f′(x)=-x2+4ax-3a2,且0<a<1,(1分)
当f′(x)>0时,得a<x<3a;
当f′(x)<0时,得x<a或x>3a;
∴f(x)的单调递增区间为(a,3a);
f(x)的单调递减区间为(-∞,a)和(3a,+∞).(5分)
故当x=3a时,f(x)有极大值,其极大值为f(3a)=1.(6分)
(Ⅱ)g(x)=f′(x)=-x2+4ax-3a2=-(x-2a)2+a2,(7分)
g(x)=x2+4ax-3a2=-(x-3a)(x-a)
①当0<a<
1
3
时,1-a>2a,∴g(x)在区间[1-a,1+a]内单调递减
[g(x)]max=g(1-a)=-8a2+6a-1,且[g(x)]min=g(1+a)=2a-1
∵恒有-a≤g(x)≤a成立
-8a2+6a-1≤a
2a-1≥-a
0<a<
1
3
,此时,a∈∅…(10分)
②当2a>1-a,且2a<a+1时,即
1
3
<a<1
,[g(x)]max=g(2a)=a2
∵-a≤g(x)≤a,∴
f′(1+a)≥-a  
f′(1-a)≥-a 
f′(2a)≤a
,即
2a-1≥-a  
-8a2+6a-1≥-a 
a2≤a

0≤a≤1 
a≥
1
3
 
7-
17
16
≤a≤
7+
17
16

1
3
≤a≤
7+
17
16
.(12分)
ⅲ)当2a≥1+a时,得a≥1与已知0<a<1矛盾.(13分)
综上所述,实数a的取值范围为
1
3
≤a≤
7+
17
16
.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
-1,x>0
1,x<0
,则
(a+b)-(a-b)f(a-b)
2
(a≠b)的值是(  )
A、aB、b
C、a,b中较小的数D、a,b中较大的数

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1-x
1+x
的反函数为h(x),又函数g(x)与h(x+1)的图象关于有线y=x对称,则g(2)的值为(  )
A、-
4
3
B、-
1
3
C、-1
D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
 
1-x2
,(|x|≤1)
|x|,(|x|>1)
,若方程f(x)=a有且只有一个实根,则实数a满足(  )
A、a<0B、0≤a<1
C、a=1D、a>1

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1+x2
1-x2

①求它的定义域;
②求证:f(
1
x
)=-f(x)

③判断它在(1,+∞)单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北一模)设函数f(x)=
1+x1-x
e-ax

(1)写出定义域及f′(x)的解析式,
(2)设a>O,讨论函数y=f(x)的单调性.

查看答案和解析>>

同步练习册答案