精英家教网 > 高中数学 > 题目详情
8.在直三棱柱ABC-A1B1C1中,侧棱长为$2\sqrt{3}$,在底面△ABC中,$C=60°,AB=\sqrt{3}$,则此直三棱柱的外接球的表面积为16π.

分析 由题意可知直三棱柱ABC-A1B1C1中,底面ABC的小圆半径为1,连接两个底面中心的连线,中点与顶点的连线就是球的半径,即可求出球的表面积.

解答 解:由题意可知直三棱柱ABC-A1B1C1中,底面小圆ABC的半径为$\frac{\sqrt{3}}{2•\frac{\sqrt{3}}{2}}$=1,
连接两个底面中心的连线,中点与顶点的连线就是球的半径,外接球的半径为:$\sqrt{3+1}$=2,
外接球的表面积为:4π•22=16π.
故答案为16π.

点评 本题是中档题,考查直三棱柱的外接球的表面积的求法,解题的关键是外接球的半径,直三棱柱的底面中心的连线的中点与顶点的连线是半径,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某单位有员工120人,其中女员工有72人,为做某项调查,拟采用分层抽样法抽取容量为15的样本,则男员工应选取的人数是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设24<a≤25,5<b≤12.求a+b,a-b,ab,$\frac{a}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,已知点P为函数y=2lnx的图象与圆M:(x-3)2+y2=r2的公共点,且它们在点P处有公切线,若二次函数y=f(x)的图象经过点O,P,M,则y=f(x)的最大值为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足an+1=an-2an+1an,an≠0且a1=1
(1)求证:数列$\{\frac{1}{a_n}\}$是等差数列,并求出{an}的通项公式;
(2)令bn=anan+1,求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知p:x(x-2)≥0,q:|x-2|<1,其中x是实数.
(1)若命题“¬p”为真,求x的取值范围;
(2)若命题p,命题q都为真,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若cos(α+β)cos(α-β)=$\frac{2}{5}$,则sin2β-cos2α=-$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若直线l的方向向量为$\overrightarrow{b}$,平面α的法向量为$\overrightarrow{n}$,则可能使l∥α的是(  )
A.$\overrightarrow{b}$=(1,0,0),$\overrightarrow{n}$=(-2,0,0)B.$\overrightarrow{b}$=(1,3,5),$\overrightarrow{n}$=(1,0,1)
C.$\overrightarrow{b}$=(0,2,1),$\overrightarrow{n}$=(-1,0,-1)D.$\overrightarrow{b}$=(1,-1,3),$\overrightarrow{n}$=(0,3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x2+2(a-1)x+b在区间(-∞,4]上递减,则a的取值范围是(  )
A.[-3,+∞)B.(-∞,-3]C.(-∞,5]D.[3,+∞)

查看答案和解析>>

同步练习册答案