精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a
a2-1
(ax-a-x),a>1

(Ⅰ)用a表示f(2)、f(3)并化简;
(Ⅱ)比较f(2)-2与f(1)-1,f(3)-3 与f(2)-2的大小关系,并由此归纳出一个更一般的结论(此结论不要求写出证明过程);
(Ⅲ)比较
f(2)
2
f(1)
1
f(3)
3
f(2)
2
的大小关系,并由此归纳出一个更一般的结论,并加以证明.
分析:(1)先根据函数f(x)的表达式直接把x=2,x=3代入计算即得.
(2)直接计算f(1)-1与f(2)-2、f(2)-2与f(3)-3,进行比较.比较大小可用做差比较法.
归纳一般的结论,构造函数利用单调性进行证明.
(3)利用基本不等式和做差比较法比较大小,归纳结论,构造函数进行证明.
解答:解:(Ⅰ)f(2)=a+
1
a
f(3)=a2+
1
a2
+1
,…(2分)
(Ⅱ)f(2)-2=a+
1
a
-2>0=f(1)-1
f(3)-3-[f(2)-2]=
(a-1)(a3-1)
a2
>0

一般地,f(n+1)-(n+1)>f(n)-n(n∈N*)       …(6分)
(Ⅲ) 
f(2)
2
-
f(1)
1
=
1
2
(a+
1
a
)-1>0
,所以
f(2)
2
f(1)
1
…(7分)
判断
f(3)
3
f(2)
2
,证明如下:
f(3)
3
f(2)
2
?2(a4+a2+1)>3a(a2+1)
?(a2+1)2-a2
3
2
a(a2+1)?(a2+1)(a2+1-
3
2
a)>a2
,(*)
因为a2+1>2a>0,a2+1-
3
2
a>
1
2
a>0
,所以(*)式显然成立,所以
f(3)
3
f(2)
2
.…(9分)
一般地
f(n+1)
n+1
f(n)
n
(n∈N*)               …(10分)
证明如下:
f(n+1)
n+1
f(n)
n
?nf(n+1)>(n+1)f(n)?n(a-1)(a2n+1+1)>a2n+1-a


?n(a2n+1+1)>
a(1-a2n)
1-a
?
n
i=1
(a2n+1-a2n-i+1-ai+1)
>0?
n
i=1
(a2n-i+1-1)(ai-1)

此式显然成立,
f(n+1)
n+1
f(n)
n
(n∈N*)…(15分)
点评:本小题主要考查函数单调性的应用、数列与不等式的综合、不等式的证明等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案