精英家教网 > 高中数学 > 题目详情
9.若点P在椭圆$\frac{{x}^{2}}{2}$+y2=1上,F1、F2分别是椭圆的两焦点,且∠F1PF2=60°,则△F1PF2的面积是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2}{3}$

分析 依题意,在△F1PF2中,∠F1PF2=60°,|F1P|+|PF2|=2a=2$\sqrt{2}$,|F1F2|=2c=2,利用余弦定理可求得|F1P|•|PF2|的值,从而可求得△F1PF2的面积.

解答 解:椭圆方程$\frac{{x}^{2}}{2}$+y2=1,
∴a=$\sqrt{2}$,b=1,c=1.
又∵P为椭圆上一点,∠F1PF2=60°,F1、F2为左右焦点,
∴|F1P|+|PF2|=2a=2$\sqrt{2}$,|F1F2|=2c=2,
∴|F1F2|2=(|PF1|+|PF2|)2-2|F1P||PF2|-2|F1P|•|PF2|cos60°,
=8-3|F1P|•|PF2|,
∴8-3|F1P|•|PF2|=4,
∴|F1P|•|PF2|=$\frac{4}{3}$.
∴S△F1PF2=$\frac{1}{2}$|F1P|•|PF2|sin60°,
=$\frac{1}{2}$×$\frac{4}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{3}$.
故答案选:C.

点评 本题考查椭圆的简单性质,考查余弦定理的应用与三角形的面积公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知集合A={x|y=$\sqrt{{x}^{2}-5x-14}$},集合B={x|y=lg(-x2-7x-12)},集合C={x|m+1≤x≤2m-1}
(1)求∁R(A∪B);
(2)若A∪C=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:x2=4y,F为抛物线C的焦点,设P为直线l:x-y-2=0上的点,过点P作抛物线C的两条切线PA,PB.
(1)在直线l上取点P(4,2),求直线AB的方程;
(2)当点P在直线l上移动时,求|AF|+|BF|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.命题“?x∈[2,3],使x2-a≥0”是真命题,则a的范围是(-∞,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x∈R||x-2|<3},Z为整数集,则集合A∩Z中所有元素的和等于10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=xsinx+cosx的导数是(  )
A.y′=2sinx+xcosxB.y′=xcosxC.y′=xcosx-sinxD.y′=sinx+xcosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=cos(4x-$\frac{5}{6}$π)的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.《九章算术》是我国数学史上堪与欧几里得《几何原本》相媲美的数学名著.其第五卷《商功》中有如下问题:“今有圆堢壔,周四丈八尺,高一丈一尺,问积几何?”这里所说的圆堢壔就是圆柱体,其底面周长是4丈8尺,高1丈1尺,问它的体积是多少?若π取3,估算该圆堢壔的体积为(  )
A.1998立方尺B.2012立方尺C.2112立方尺D.2324立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,已知AB=2$\sqrt{3}$,AC=2,∠B=30°,则△ABC的面积是(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$或2$\sqrt{3}$

查看答案和解析>>

同步练习册答案