精英家教网 > 高中数学 > 题目详情
19.在△ABC中,已知AB=2$\sqrt{3}$,AC=2,∠B=30°,则△ABC的面积是(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$或2$\sqrt{3}$

分析 利用余弦定理列出关系式,把c,b,以及cosB的值代入求出a的值,利用三角形面积公式即可求出三角形ABC面积.

解答 解:∵在钝角△ABC中,已知AB=c=2$\sqrt{3}$,AC=b=2,∠B=30°,
∴由余弦定理得:b2=a2+c2-2accosB,即4=a2+12-6a,
解得:a=4或a=2,
当a=2时,△ABC的面积S=$\frac{1}{2}$acsinB=$\sqrt{3}$;
当a=4时,△ABC的面积S=$\frac{1}{2}$acsinB=2$\sqrt{3}$;
故选:D.

点评 此题考查了正弦定理,余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若点P在椭圆$\frac{{x}^{2}}{2}$+y2=1上,F1、F2分别是椭圆的两焦点,且∠F1PF2=60°,则△F1PF2的面积是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A=(0,1),B={6,7,8},从集合A和集合B分别取一个元素,作为直角坐标系中的点的横坐标和纵坐标,则可确定的不同点的个数为(  )
A.5B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若-$\frac{π}{2}$<β<0<α<$\frac{π}{2}$,cos($\frac{π}{4}$+α)=$\frac{1}{3}$,cos($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{\sqrt{3}}{3}$,则cos(α+$\frac{β}{2}$)=$\frac{5\sqrt{3}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.复数z=$\frac{5+i}{1+i}$的虚部为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对如图中的A、B、C、D四个区域染色,每块区域染一种颜色,有公共边的区域不同色,现有红、黄、蓝三种不同颜色可以选择,则不同的染色方法共有(  )
A.12种B.18种C.20种D.22种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(x-2y)(x+y)8的展开式中,x2y7的系数为-48.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.从a,b,c这3个字母中取出2个按顺序排成一列,共有不同的排法(  )
A.4种B.6种C.12种D.3种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足:an=2an-1+2n+2(n∈N*,n≥2),a1=2,数列{bn}满足bn=$\frac{{a}_{n}+2}{{2}^{n}}$(n∈N*).
(1)求证:数列{bn}是等差数列;
(2)若数列{an}的前n项和为Sn,求Sn
(3)己知数列{cn}满足cn=$\frac{1}{{b}_{n}{b}_{n+1}}$,且数列{cn}的前n项和为Tn,若不等式8Tn≤λbn+1对任意的n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案