分析 (1)由an=2an-1+2n+2(n∈N*,n≥2),a1=2,变形为:$\frac{{a}_{n}+2}{{2}^{n}}$-$\frac{{a}_{n-1}+2}{{2}^{n-1}}$=1,可得:bn-bn-1=1,即可证明.
(2)由(1)可得:bn=n+1.可得:an=(n+1)•2n-2.利用“错位相减法”与等比数列的前n项和公式即可得出.
(3)利用“裂项求和”方法、数列的单调性即可得出.
解答 (1)证明:由an=2an-1+2n+2(n∈N*,n≥2),a1=2,
变形为:$\frac{{a}_{n}+2}{{2}^{n}}$-$\frac{{a}_{n-1}+2}{{2}^{n-1}}$=1,
∵数列{bn}满足bn=$\frac{{a}_{n}+2}{{2}^{n}}$(n∈N*),
∴bn-bn-1=1,
∴数列{bn}是等差数列,首项为2,公差为1.
(2)解:由(1)可得:bn=2+(n-1)=n+1.
∴$\frac{{a}_{n}+2}{{2}^{n}}$=n+1,∴an=(n+1)•2n-2.
设数列{(n+1)•2n}的前n项和为An.
则An=2×2+3×22+4×23+…+(n+1)•2n.
2An=2×22+3×23+…+n•2n+(n+1)•2n+1,
∴-An=4+(22+23+…+2n)-(n+1)•2n+1=2+$\frac{2({2}^{n}-1)}{2-1}$-(n+1)•2n+1=(-n)•2n+1,
∴An=n•2n+1.
∴Sn=n•2n+1-2n.
(3)解:∵cn=$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
∴数列{cn}的前n项和为Tn=$(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}$.
不等式8Tn≤λbn+1,化为:4$-\frac{8}{n+2}$≤λ(n+2),
∴λ≥$\frac{4n}{(n+2)^{2}}$,
∵$\frac{4n}{(n+2)^{2}}$=$\frac{4}{n+\frac{4}{n}+4}$≤$\frac{1}{2}$,
∵不等式8Tn≤λbn+1对任意的n∈N*恒成立,
∴$λ≥\frac{1}{2}$.
∴实数λ的取值范围是$[\frac{1}{2},+∞)$.
点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式、数列的单调性,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$或2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+$\sqrt{2}$ | B. | 1+2$\sqrt{2}$ | C. | 2+2$\sqrt{2}$ | D. | 2+$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12-4$\sqrt{3}$ | B. | 12+4$\sqrt{3}$ | C. | 4$\sqrt{3}$-4 | D. | 4$\sqrt{3}$+4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A${\;}_{10}^{7}$ | B. | C${\;}_{10}^{7}$ | C. | 84 | D. | 63 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com