精英家教网 > 高中数学 > 题目详情
6.已知a为实数,函数f(x)=alnx+x2-4x.
(Ⅰ)是否存在实数a,使得f(x)在x=1处取极值?证明你的结论;
(Ⅱ)若函数f(x)在[2,3]上存在单调递增区间,求实数a的取值范围;
(Ⅲ)设g(x)=(a-2)x,若存在x0∈[$\frac{1}{e}$,e],使得f(x0)≤g(x0)成立,求实数a的取值范围.

分析 (Ⅰ)求得函数的定义域,求导,假设存在实数a,使f(x)在x=1处取极值,则f′(1)=0,解出a的值,根据x=1的左右单调性是否相同,即可判断x=1是不是极值点;
(Ⅱ)先求出f(x)的导数,将问题转化成,a≥2-2(x-1)2,在x∈[2,3]有解,构造辅助函数,利用函数的求得φ(x)=2-2(x-1)2的最小值,即可求得a的取值范围.
(Ⅲ)在[1,e]上存在一点x0,使得f(x0)<g(x0)成立,即在[$\frac{1}{e}$,e],上存在一点x0,使得G(x0)<0,即函数G(x)在[$\frac{1}{e}$,e],上的最小值小于零.对G(x)求导.求出G(x)的最小值,即可a的取值范围.

解答 解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=$\frac{a}{x}$+2x-4=$\frac{2{x}^{2}-4x+a}{x}$,
假设存在实数a,使得f(x)下x=1处取极值,则f′(1)=0,
∴a=2,
此时,f(x)=$\frac{2(x-1)^{2}}{x}$,
∴当0<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)>0,f(x)单调递增,
∴x=1不是f(x)的极值点,
故不存在实数a,使得f(x)=1处取极值.
(Ⅱ)f′(x)=$\frac{2{x}^{2}-4x+a}{x}$=$\frac{2(x-1)^{2}+a-2}{x}$(x>0),
问题等价于,存在x∈[2,3],使得f′(x)≥0,即a≥2-2(x-1)2,在x∈[2,3]有解,
∴φ(x)=2-2(x-1)2,在[2,3]上递减,
∴φmin=φ(3)=-6,
∴a>-6;
(Ⅲ)记F(x)=x-lnx,
∴F′(x)=$\frac{x-1}{x}$(x>0),
∴当0<x<1,F′(x)<0,F(x)单调递减;
当x>1时,F′(x)>0,F(x)单调递增;
∴F(x)≥F(1)=1>0,即x>lnx,(x>0),
由f(x0)≤g(x0)得:(x0-lnx0)a≥x02-2x0
∴a≥$\frac{{x}_{0}^{2}-2{x}_{0}}{{x}_{0}-ln{x}_{0}}$,
记G(x)=$\frac{{x}^{2}-2x}{x-lnx}$,x∈[$\frac{1}{e}$,e],
G′(x)=$\frac{(2x-2)(x-lnx)-(x-2)(x-1)}{(x-lnx)^{2}}$=$\frac{(x-1)(x-2lnx+2)}{(x-lnx)^{2}}$,
x∈[$\frac{1}{e}$,e],
∴2-2lnx=2(1-lnx)≥0,
∴x-2lnx+2>0,
∴x∈($\frac{1}{e}$,e)时,G′(x)<0,G(x)递减,x∈(1,e)时,G′(x)>0,G(x)递增,
∴a≥G(x)min=G(1)=-1,
故实数a的取值范围为[-1,+∞).

点评 本题考查了导数和函数的极值最值得关系,以及采用分离参数法求参数的取值范围,培养了学生的运用知识解决问题的能力,转化能力和运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足:an=2an-1+2n+2(n∈N*,n≥2),a1=2,数列{bn}满足bn=$\frac{{a}_{n}+2}{{2}^{n}}$(n∈N*).
(1)求证:数列{bn}是等差数列;
(2)若数列{an}的前n项和为Sn,求Sn
(3)己知数列{cn}满足cn=$\frac{1}{{b}_{n}{b}_{n+1}}$,且数列{cn}的前n项和为Tn,若不等式8Tn≤λbn+1对任意的n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.等差数列{an}中,a20=30,d=2,求:
①a1及an
②若Sn=190,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,AB是圆O的直径,C是圆O上除A、B外的一点,DC⊥平面ABC,四边形CBED为矩形,CD=1,AB=4.
(1)求证:ED⊥平面ACD;
(2)当三棱锥E-ADC体积取最大值时,求此刻点C到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}$x2-alnx(a>0).
(1)若a=2,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)求函数y=f(x)在区间[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知F为抛物线y2=4x的焦点,点A,B在抛物线上,O为坐标原点.若$\overrightarrow{AF}$+2$\overrightarrow{BF}$=0,则△OAB的面积为(  )
A.$\frac{{3\sqrt{2}}}{8}$B.$\frac{{3\sqrt{2}}}{4}$C.$\frac{{3\sqrt{2}}}{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知四面体ABCD满足$AB=CD=\sqrt{6},AC=AD=BC=BD=2$,则四面体ABCD的外接球的表面积是7π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求适合下列条件的抛物线的标准方程:
(1)顶点在坐标原点,准线方程是x=4;
(2)焦点是F(-8,0),顶点在原点;
(3)顶点在原点,坐标轴为对称轴,且经过点(4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从1,2,3,4这4个数中,不放回地任意取两个数,两个数的和是奇数的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案