精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{1}{2}$x2-alnx(a>0).
(1)若a=2,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)求函数y=f(x)在区间[1,e]上的最小值.

分析 (1)求出函数的导数,计算f′(1),f(1)的值,代入切线方程整理即可;
(2)求出导函数,令导函数为0求出根,通过讨论根与区间[1,e]的关系,判断出函数的单调性,求出函数的最小值

解答 解:(1)a=2,f(x)=$\frac{1}{2}$x2-2lnx,f′(x)=x-$\frac{2}{x}$,
f′(1)=-1,f(1)=$\frac{1}{2}$,
∴f(x)在(1,f(1))处的切线方程是:2x+2y-3=0;
(2)由f′(x)=$\frac{{x}^{2}-a}{x}$,
由a>0及定义域为(0,+∞),令f′(x)=0得x=$\sqrt{a}$,
①若$\sqrt{a}$≤1即0<a≤1在(1,e)上,f′(x)>0,
f(x)在[1,e]上单调递增,f(x)min=f(1)=$\frac{1}{2}$;
②若1<$\sqrt{a}$<e,即1<a<e2
在(1,$\sqrt{a}$)上,f′(x)<0,f(x)单调递减;
在($\sqrt{a}$,e)上,f′(x)>0,
f(x)单调递增,因此在[1,e]上,f(x)min=f($\sqrt{a}$)=$\frac{1}{2}$a(1-lna);
③若$\sqrt{a}$≥e,即a≥e2在(1,e)上,f′(x)<0,
f(x)在[1,e]上单调递减,f(x)min=f(e)=$\frac{1}{2}$e2-a
综上,当0<a≤1时,f(x)min=$\frac{1}{2}$;
当1<$\sqrt{a}$<e时,f(x)min=$\frac{1}{2}$a(1-lna);
当a≥e2时,f(x)min=$\frac{1}{2}$e2-a.

点评 本题考查函数的单调区间的求法、利用导数求闭区间上函数的最值,解题时要认真审题,仔细解答,注意合理地进行分类讨论思想和等价转化思想进行解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在△ABC中,∠B=$\frac{π}{3}$,∠C=$\frac{π}{4}$,BC=8,D是边BC上一点,且$\overrightarrow{BD}$=$\frac{\sqrt{3}-1}{2}$$\overrightarrow{BC}$,则AD的长为(  )
A.12-4$\sqrt{3}$B.12+4$\sqrt{3}$C.4$\sqrt{3}$-4D.4$\sqrt{3}$+4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={2,x2,x},B={2,2+x,1+2x},且A=B,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-axlnx,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设$g(x)=\frac{f(x)}{lnx}$,若函数g(x)在(1,+∞)上为减函数,求实数a的最小值;
(Ⅲ)若$?{x_0}∈[{e,{e^2}}]$,使得$f({x_0})≤\frac{1}{4}ln{x_0}$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+bx+c(a,b∈R)若函数f(x)在x=0,x=2处取得极值,
(1)求a,b的值.
(2)若x∈[0,1],f(x)≤c2-2恒成立时,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a为实数,函数f(x)=alnx+x2-4x.
(Ⅰ)是否存在实数a,使得f(x)在x=1处取极值?证明你的结论;
(Ⅱ)若函数f(x)在[2,3]上存在单调递增区间,求实数a的取值范围;
(Ⅲ)设g(x)=(a-2)x,若存在x0∈[$\frac{1}{e}$,e],使得f(x0)≤g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点P(1,-1)在抛物线C:y=ax2上,过点P作两条斜率互为相反数的直线分别交抛物线C于点A、B(异于点P).
(Ⅰ)求抛物线C的焦点坐标.
(Ⅱ)记直线AB交y轴于点(0,y0),求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个棱长为4的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该截面的面积是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于线性相关系数r,叙述正确的是(  )
A.|r|∈(0,+∞),|r|越大,相关程度越大,反之相关程度越小
B.|r|≤1且|r|越接近1,相关程度越大;|r|越接近0,相关程度越小
C.r∈(-∞,+∞),r越大,相关程度越大,反之,相关程度越小
D.以上说法都不对

查看答案和解析>>

同步练习册答案