精英家教网 > 高中数学 > 题目详情
11.对于线性相关系数r,叙述正确的是(  )
A.|r|∈(0,+∞),|r|越大,相关程度越大,反之相关程度越小
B.|r|≤1且|r|越接近1,相关程度越大;|r|越接近0,相关程度越小
C.r∈(-∞,+∞),r越大,相关程度越大,反之,相关程度越小
D.以上说法都不对

分析 根据线性相关系数r的意义,对选项中的叙述进行判断即可.

解答 解:对于线性相关系数r,有|r|≤1,
且|r|越接近1,相关程度就越大;
|r|越接近0,相关程度就越小;
由此得出选项B正确.
故选:B.

点评 本题考查了线性相关系数r的意义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}$x2-alnx(a>0).
(1)若a=2,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)求函数y=f(x)在区间[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一条光线从抛物线y2=2px(p>0)的焦点F射出,经抛物线上一点B反射后,反射光线经过A(5,4),若|AB|+|FB|=6,则抛物线的标准方程为y2=4x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,图②为图①空间图形的主视图和侧视图,其中侧视图为正方形.在图①中,设平面BEF与平面ABCD相交于直线l.
(I)求证:l⊥平面CDE;
(II)在图①中,线段DE上是否存在点M,使得直线MC与平面BEF所成的角的正弦值等于$\frac{{\sqrt{5}}}{5}$?若存在,求出点M的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)是定义在R上偶函数且连续,当x>0时,f′(x)<0,若f(lnx)>f(1),则x的取值范围是(  )
A.($\frac{1}{e}$,1)B.(0,$\frac{1}{e}$)∪(1,+∞)C.($\frac{1}{e}$,e)D.(0,1)∪(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从1,2,3,4这4个数中,不放回地任意取两个数,两个数的和是奇数的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.动直线l:(3λ+1)x+(1-λ)y+6-6λ=0过定点P,则点P的坐标为(0,-6),若直线l与x轴的正半轴有公共点,则λ的取值范围是{λ|λ>1或λ<-$\frac{1}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.动圆M与圆(x-1)2+y2=1相外切且与y轴相切,则动圆M的圆心的轨迹记C,(1)求轨迹C的方程;(2)定点A(3,0)到轨迹C上任意一点的距离|MA|的最小值;(3)经过定点B(-2,1)的直线m,试分析直线m与轨迹C的公共点个数,并指明相应的直线m的斜率k是否存在,若存在求k的取值或取值范围情况[要有解题过程,没解题方程只有结论的只得结论分].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知角θ在第四象限,且|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,则$\frac{θ}{2}$是(  )
A.第三象限B.第四象限
C.第一象限或第三象限D.第二象限或第四象限

查看答案和解析>>

同步练习册答案