精英家教网 > 高中数学 > 题目详情
3.动直线l:(3λ+1)x+(1-λ)y+6-6λ=0过定点P,则点P的坐标为(0,-6),若直线l与x轴的正半轴有公共点,则λ的取值范围是{λ|λ>1或λ<-$\frac{1}{3}$}.

分析 由题意(3λ+1)x+(1-λ)y+6-6λ=0得(其中λ∈R),由此可得方程组,从而可求定点的坐标;分类讨论,即可得到λ的取值范围.

解答 解:由(3λ+1)x+(1-λ)y+6-6λ=0得:λ(3x-y-6)+(x+y+6)=0,
由$\left\{\begin{array}{l}{3x-y-6=0}\\{x+y+6=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=0}\\{y=-6}\end{array}\right.$,即直线恒过定点P(0,-6);
由(3λ+1)x+(1-λ)y+6-6λ=0,
当λ=1时,即x=0,不满足题意,
当λ≠1时,当y=0时,(3λ+1)x+6-6λ=0,
若λ=-$\frac{1}{3}$,此时无解,
若λ≠-$\frac{1}{3}$,
则x=$\frac{6λ-6}{3λ+1}$,
由直线l与x轴的正半轴有公共点,
∴$\frac{6λ-6}{3λ+1}$>0,
即(λ-1)(x+$\frac{1}{3}$)>0,
解得λ>1或λ<-$\frac{1}{3}$,
综上所述λ的范围为{λ|λ>1或λ<-$\frac{1}{3}$}
故答案为:(0,-6),{λ|λ>1或λ<-$\frac{1}{3}$}

点评 本题考查直线恒过定点,两直线交点的意义,直线的斜率的范围是解得本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知点P(1,-1)在抛物线C:y=ax2上,过点P作两条斜率互为相反数的直线分别交抛物线C于点A、B(异于点P).
(Ⅰ)求抛物线C的焦点坐标.
(Ⅱ)记直线AB交y轴于点(0,y0),求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.志强同学在一次课外研究性学习中发现以下一系列等式成立:$\frac{1+(\frac{1}{2})^{2}}{1+{2}^{2}}$=($\frac{1+\frac{1}{2}}{1+2}$)2,$\frac{1+{4}^{3}}{1+(\frac{1}{4})^{3}}$=($\frac{1+4}{1+\frac{1}{4}}$)3,$\frac{{1+{{({-\frac{{\sqrt{2}}}{2}})}^4}}}{{1+{{({-\sqrt{2}})}^4}}}={({\frac{{1-\frac{{\sqrt{2}}}{2}}}{{1-\sqrt{2}}}})^4}$,…,于是他想用符号表示这个规律,他已经写了一部分,请帮他补充完整,若a,b∈R,b≠1,ab=1,n∈N*,则$\frac{1+{a}^{n}}{1+{b}^{n}}=(\frac{1+a}{1+b})^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于线性相关系数r,叙述正确的是(  )
A.|r|∈(0,+∞),|r|越大,相关程度越大,反之相关程度越小
B.|r|≤1且|r|越接近1,相关程度越大;|r|越接近0,相关程度越小
C.r∈(-∞,+∞),r越大,相关程度越大,反之,相关程度越小
D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=x3-3x2+2的减区间为(  )
A.(2,+∞)B.(-∞,2)C.(-∞,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设东、西、南、北四面通往山顶的路各有2、3、3、4条路,只从一面上山,而从任意一面下山的走法最多,应(  )
A.从东边上山B.从西边上山C.从南边上山D.从北边上山

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在多面体ABCDEF中,DE⊥平面ABCD,AD∥BC,平面BCEF∩平面ADEF=EF,∠BAD=60°,AB=AD=2,DE=1.
(1)求证:BC∥EF;
(2)求三棱锥B-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过物线y2=4x上意一点P向圆(x-4)2+y2=2作切线,切点为A,则|PA|的最小值等于$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x∈{2,3,7},y∈{-31,-24,4},则xy可表示不同的值的个数是9.

查看答案和解析>>

同步练习册答案