精英家教网 > 高中数学 > 题目详情
16.从1,2,3,4这4个数中,不放回地任意取两个数,两个数的和是奇数的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

分析 根据已知中从1,2,3,4这4个数中,不放回地任意取两个数,我们列出所有的基本事件个数,及满足条件两个数都是奇数的基本事件个数,代入古典概型概率公式,即可得到答案

解答 解:从1,2,3,4这4个数中,不放回地任意取两个数,共有:
(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)
(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种
其中满足条件有(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3)共8种情况
故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率P=$\frac{8}{12}=\frac{2}{3}$
故选:A.

点评 本题考查的知识点是古典概型公式,古典概型问题的处理方法是:计算出基本事件总数N,则满足条件A的基本事件总数A(N),代入P=A(N)÷N求了答案

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知a为实数,函数f(x)=alnx+x2-4x.
(Ⅰ)是否存在实数a,使得f(x)在x=1处取极值?证明你的结论;
(Ⅱ)若函数f(x)在[2,3]上存在单调递增区间,求实数a的取值范围;
(Ⅲ)设g(x)=(a-2)x,若存在x0∈[$\frac{1}{e}$,e],使得f(x0)≤g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知某个几何体的三视图如图所示,该几何体的体积是(  )
A.4$\sqrt{5}$B.12C.8$\sqrt{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a=$\sqrt{\frac{1-cos50°}{2}}$,b=$\frac{2tan13°}{1-ta{n}^{2}13°}$,c=$\frac{1}{2}$cos4°-$\frac{\sqrt{3}}{2}$sin4°,则有(  )
A.a>b>cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对于线性相关系数r,叙述正确的是(  )
A.|r|∈(0,+∞),|r|越大,相关程度越大,反之相关程度越小
B.|r|≤1且|r|越接近1,相关程度越大;|r|越接近0,相关程度越小
C.r∈(-∞,+∞),r越大,相关程度越大,反之,相关程度越小
D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(Ⅰ)已知角α终边上一点P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值.
(Ⅱ)已知$\overrightarrow a$=(3,1),$\overrightarrow b$=(sinα,cosα),且$\overrightarrow a$∥$\overrightarrow b$,求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设东、西、南、北四面通往山顶的路各有2、3、3、4条路,只从一面上山,而从任意一面下山的走法最多,应(  )
A.从东边上山B.从西边上山C.从南边上山D.从北边上山

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直四棱柱ABCD-A1B1C1D1中,AB∥CD,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0);
(1)求证:CD⊥平面ADD1A1
(2)现将与四棱柱ABCD-A1B1C1D1形状和大小完全相同的两个四棱柱拼接成一个新的四棱柱,规定:若拼接成的新的四棱柱形状完全相同,则视为同一种拼接方案;问:共有几种不同的方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的表达式(直接写出答案,不必说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,sinA:sinB:sinC=2:3:4,则最小角的余弦值为(  )
A.$\frac{7}{8}$B.1C.$\frac{7}{9}$D.$\frac{6}{7}$

查看答案和解析>>

同步练习册答案