精英家教网 > 高中数学 > 题目详情
4.设a=$\sqrt{\frac{1-cos50°}{2}}$,b=$\frac{2tan13°}{1-ta{n}^{2}13°}$,c=$\frac{1}{2}$cos4°-$\frac{\sqrt{3}}{2}$sin4°,则有(  )
A.a>b>cB.a<b<cC.a<c<bD.b<c<a

分析 利用二倍角公式化简三个数,通过三角函数的单调性判断即可.

解答 解:a=$\sqrt{\frac{1-cos50°}{2}}$=sin22.5°,b=$\frac{2tan13°}{1-ta{n}^{2}13°}$=tan26°,c=$\frac{1}{2}$cos4°-$\frac{\sqrt{3}}{2}$sin4°=sin26°,
所以a<c<b.
故选:C.

点评 本题考查三角函数的化简求值,函数值的大小比较,单调性的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,AB是圆O的直径,C是圆O上除A、B外的一点,DC⊥平面ABC,四边形CBED为矩形,CD=1,AB=4.
(1)求证:ED⊥平面ACD;
(2)当三棱锥E-ADC体积取最大值时,求此刻点C到平面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求适合下列条件的抛物线的标准方程:
(1)顶点在坐标原点,准线方程是x=4;
(2)焦点是F(-8,0),顶点在原点;
(3)顶点在原点,坐标轴为对称轴,且经过点(4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.斜率为k的直线l过抛物线C:y2=4x的焦点F,且交抛物线C于A、B两点,已知点P(-1,k),且△PAB的面积为6$\sqrt{3}$,则k的值为(  )
A.±$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.±$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,图②为图①空间图形的主视图和侧视图,其中侧视图为正方形.在图①中,设平面BEF与平面ABCD相交于直线l.
(I)求证:l⊥平面CDE;
(II)在图①中,线段DE上是否存在点M,使得直线MC与平面BEF所成的角的正弦值等于$\frac{{\sqrt{5}}}{5}$?若存在,求出点M的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex,其中e=2.71828…为自然对数的底数.
(1)设函数g(x)=(x2+ax-2a-3)f(x),a∈R.试讨论函数g(x)的单调性;
(2)设函数h(x)=f(x)-mx2-x,m∈R,若对任意${x_1},{x_2}∈[{\frac{1}{2},2}]$,且x1>x2都有x2h(x1)-x1h(x2)>x1x2(x2-x1)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从1,2,3,4这4个数中,不放回地任意取两个数,两个数的和是奇数的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某几何体的三视图如图所示,则该几何体的外接球表面积是32π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\left\{\begin{array}{l}x>\frac{1}{3}\\ y>1\end{array}$,若对满足条件的任意实数x,y,不等式$\frac{{9{x^2}}}{{{a^2}(y-1)}}$+$\frac{y^2}{{{a^2}(3x-1)}}$≥1恒成立,则实数a的最大值是2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案