精英家教网 > 高中数学 > 题目详情
10.等差数列{an}中,a20=30,d=2,求:
①a1及an
②若Sn=190,求n.

分析 ①②利用等差数列的通项公式及其前n项和公式即可得出.

解答 解:①∵等差数列{an}中,a20=30,d=2,∴30=a1+19×2,解得a1=-8.
an=-8+2(n-1)=2n-10.
②190=-8n+$\frac{n(n-1)}{2}×2$,化为:n2-9n-190=0,
解得n=19.

点评 本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设直线l过双曲线x2-y2=1的一个焦点,且与双曲线相交于A、B两点,若以AB为直径的圆与y轴相切,则|AB|的值为(  )
A.1+$\sqrt{2}$B.1+2$\sqrt{2}$C.2+2$\sqrt{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将10个三好名额分到7个班中,每班至少一名,则分法种数为(  )
A.A${\;}_{10}^{7}$B.C${\;}_{10}^{7}$C.84D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i是虚数单位,则$\frac{3-i}{i}$(  )
A.-3+iB.-1+3iC.-3-iD.-1-3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={2,x2,x},B={2,2+x,1+2x},且A=B,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,△ABC内接于圆O,分别取AB、AC的中点D、E,连接DE,直线DE交圆O在B点处的切线于G,交圆于H、F两点,若GD=4,DE=2,DF=4.
(Ⅰ) 求证:$\frac{GB}{EC}$=$\frac{GD}{BD}$;
(Ⅱ)求HD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-axlnx,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)设$g(x)=\frac{f(x)}{lnx}$,若函数g(x)在(1,+∞)上为减函数,求实数a的最小值;
(Ⅲ)若$?{x_0}∈[{e,{e^2}}]$,使得$f({x_0})≤\frac{1}{4}ln{x_0}$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a为实数,函数f(x)=alnx+x2-4x.
(Ⅰ)是否存在实数a,使得f(x)在x=1处取极值?证明你的结论;
(Ⅱ)若函数f(x)在[2,3]上存在单调递增区间,求实数a的取值范围;
(Ⅲ)设g(x)=(a-2)x,若存在x0∈[$\frac{1}{e}$,e],使得f(x0)≤g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知某个几何体的三视图如图所示,该几何体的体积是(  )
A.4$\sqrt{5}$B.12C.8$\sqrt{3}$D.8

查看答案和解析>>

同步练习册答案