分析 (I)由GB为圆O的切线,可得∠GBA=∠ACB.由DE为△ABC的中位线,可得∠AED=∠ACB,可得△GBD∽△AED,即可证明.
(II)由(I)可知:△GBD∽△AED,可得$\frac{DE}{BD}=\frac{AD}{GD}=\frac{BD}{GD}$,由相交弦定理可得;BD•AD=DF•HD,即可得出.
解答 (I)证明:∵GB为圆O的切线,∴∠GBA=∠ACB,
∵DE为△ABC的中位线,∴∠AED=∠ACB,
∴∠GBA=∠AED,
∴△GBD∽△AED,
∴$\frac{GB}{AE}$=$\frac{GD}{AD}$,又AE=EC,AD=BD,
∴$\frac{GB}{EC}$=$\frac{GD}{BD}$.
(II)解:由(I)可知:△GBD∽△AED,
∴$\frac{DE}{BD}=\frac{AD}{GD}=\frac{BD}{GD}$,可得BD2=DE•GD=8,
由相交弦定理可得;BD•AD=DF•HD,
∴HD=$\frac{B{D}^{2}}{DF}$=2.
点评 本题考查了圆的切线的性质、三角形中位线定理、相似三角形的性质、相交弦定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | sin2α | B. | cos2α | C. | tan2α | D. | cot2α |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{2}}}{8}$ | B. | $\frac{{3\sqrt{2}}}{4}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | 3$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | ±$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com