精英家教网 > 高中数学 > 题目详情
4.(1+x-2x25的展开式中x4项的系数为-15.

分析 由(1+x-2x25=[1+x(1-2x)]5,利用二项式展开式的通项公式,即可求出(1+x-2x25的展开式中x4项的系数.

解答 解:因为(1+x-2x25=[1+x(1-2x)]5
其展开式的通项公式为:
Tr+1=${C}_{5}^{r}$•[x(1-2x)]r=${C}_{5}^{r}$•xr•[$\sum_{k=0}^{r}$${C}_{r}^{k}$•(-2x)k]=${C}_{5}^{r}$•[$\sum_{k=0}^{r}$${C}_{r}^{k}$•(-2)k•xk+r];
令k+r=4,且0≤r≤5,0≤k≤r,k、r∈N,
则$\left\{\begin{array}{l}{r=4}\\{k=0}\end{array}\right.$,或$\left\{\begin{array}{l}{r=3}\\{k=1}\end{array}\right.$,或$\left\{\begin{array}{l}{r=2}\\{k=2}\end{array}\right.$;
所以(1+x-2x25的展开式中x4项的系数为:
${C}_{5}^{4}$•${C}_{4}^{0}$+${C}_{5}^{3}$•${C}_{3}^{1}$•(-2)+${C}_{5}^{2}$•${C}_{2}^{2}$•(-2)2=-15.
故答案为:-15.

点评 本题考查了二项式展开式定理的应用问题,解题时应用展开式的通项公式求特定项的系数,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知sinα+cosα=$\sqrt{2}$,α∈(0,π),则$tan(α-\frac{π}{3})$=(  )
A.$2-\sqrt{3}$B.$-2-\sqrt{3}$C.$-2+\sqrt{3}$D.$2+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,点D在边AB上,|AD|=2|BD|,若$\overrightarrow{CA}$=$\overrightarrow a$,$\overrightarrow{CB}$=$\overrightarrow b$,则$\overrightarrow{CD}$=(  )
A.$\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$B.$\frac{1}{3}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$C.$\frac{3}{5}$$\overrightarrow a$+$\frac{4}{5}$$\overrightarrow b$D.$\frac{4}{5}$$\overrightarrow a$+$\frac{3}{5}$$\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知tan($\frac{π}{4}$+α)=3,计算:
(1)tanα;  
(2)tan2α;       
(3)$\frac{2sinαcosα+3cos2α}{5cos2α-3sin2α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=2sinxcos2$\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π处取得最小值,且满足cos2C-cos2A=2sin($\frac{π}{3}$+C)sin($\frac{π}{3}$-C).
(1)求φ的值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=$\sqrt{2}$,f(A)=$\frac{{\sqrt{3}}}{2}$,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=Asin(ωx+φ)(A>0,0<ω<4,|φ|<$\frac{π}{2}$)过点(0,$\frac{1}{2}$),且当x=$\frac{π}{6}$时,函数f(x)取得最大值1.
(1)将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到函数g(x),求函数g(x)的表达式;
(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x-1,求函数h(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的内角A,B,C的三条对边分别为a,b,c,且b(3b-c)cosA=$\overrightarrow{CA}$•$\overrightarrow{CB}$.
(Ⅰ)求cosA;
(Ⅱ)若△ABC的面积为2$\sqrt{2}$,且AB边上的中线CM的长为2$\sqrt{2}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示为函数y=f′(x),y=g′(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,⊙O与x轴的正半轴的交点为A,点C、B在⊙O上,且点C位于第一象限,点B的坐标为($\frac{4}{5}$,-$\frac{3}{5}$),∠AOC=α(α为锐角).
(1)求⊙O的半径,并用角α的三角函数表示C点的坐标;
(2)若|BC|=$\sqrt{2}$,求tanα的值.

查看答案和解析>>

同步练习册答案