【题目】给定椭圆C:(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2,求实数m的值.
【答案】(1)a=2,b=1(2)m=3
【解析】
试题分析:(1)利用待定系数法求椭圆方程中参数. 由题意,得b=1,,c2=a2+b2,解得a=2,b=1.(2)设直线l的方程为y=kx+m,即kx-y+m=0.因为直线l与椭圆C有且只有一个公共点,故方程组有且只有一组解.从而△=(8km)2-4(1+4k2)( 4m2-4)=0.化简,得m2=1+4k2.①因为直线l被圆x2+y2=5所截得的弦长为2,所以圆心到直线l的距离d=.即.② 由①②,解得k2=2,m2=9.因为m>0,所以m=3.
试题解析:解:(1)记椭圆C的半焦距为c.
由题意,得b=1,,c2=a2+b2,
解得a=2,b=1. 4分
(2)由(1)知,椭圆C的方程为+y2=1,圆C1的方程为x2+y2=5.
显然直线l的斜率存在.
设直线l的方程为y=kx+m,即kx-y+m=0. 6分
因为直线l与椭圆C有且只有一个公共点,
故方程组(*) 有且只有一组解.
由(*)得(1+4k2)x2+8kmx+4m2-4=0.
从而△=(8km)2-4(1+4k2)( 4m2-4)=0.
化简,得m2=1+4k2.① 10分
因为直线l被圆x2+y2=5所截得的弦长为2,
所以圆心到直线l的距离d=.
即. ② 14分
由①②,解得k2=2,m2=9.
因为m>0,所以m=3. 16分
科目:高中数学 来源: 题型:
【题目】某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:
广告支出x(单位:万元) | 1 | 2 | 3 | 4 |
销售收入y(单位:万元) | 12 | 28 | 42 | 56 |
(1)画出表中数据的散点图;
(2)求出y对x的回归直线方程;
(3)若广告费为9万元,则销售收入约为多少万元?
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x2+bx+b) (b∈R)
(1)当b=4时,求f(x)的极值;
(2)若f(x)在区间(0, )上单调递增,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等边△ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.
(1)证明:CM⊥DE;
(2)在边AC上找一点N,使CD∥平面BEN.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班名同学的数学小测成绩的频率分布表如图所示,其中,且分数在的有人.
(1)求的值;
(2)若分数在的人数是分数在的人数的,求从不及格的人中任意选取3人,其中分数在50分以下的人数为,求的数学期.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:
男 | 女 | 总计 | ||
读营养说明 | 16 | 28 | 44 | |
不读营养说明 | 20 | 8 | 28 | |
总计 | 36 | 36 | 72 |
(1)根据以上列联表判断,能否在犯错误的概率不超过0.005的前提下认为性别和是否看营养说明有关系呢?
(2)从被询问的28名不读营养说明的大学生中,随机抽取2名学生,求抽到女生人数
的分布列及数学期望.
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率低于,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,该运动员三次投篮恰有两次命中的概率为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com