精英家教网 > 高中数学 > 题目详情
12.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=3+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-4ρcosθ+1=0.
(Ⅰ)写出直线l和曲线C的直角坐标方程;
(Ⅱ)P是曲线C上任意一点,求P到直线l的距离的最大值.

分析 (Ⅰ)由$\left\{\begin{array}{l}x=3+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$消去参数能得到直线l的直角坐标方程,由ρ2-4ρcosθ+1=0,ρ2=x2+y2,ρcosθ=x,能求出曲线C的直角坐标方程.
(Ⅱ)曲线C的圆心为(2,0),半径为$\sqrt{3}$,求出圆心到直线$\sqrt{3}x-y-3\sqrt{3}=0$的距离,由此能求出P到直线l的距离的最大值.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}x=3+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$消去参数t得,
直线l的直角坐标方程为$\sqrt{3}x-y-3\sqrt{3}=0$.…(2分)
∵ρ2-4ρcosθ+1=0,ρ2=x2+y2,ρcosθ=x,
∴曲线C的直角坐标方程x2+y2-4x+1=0…(4分)
(Ⅱ)∵曲线C的直角坐标方程x2+y2-4x+1=0,
∴曲线C:(x-2)2+y2=3…(5分),圆心为(2,0),半径为$\sqrt{3}$…(6分)
圆心到直线$\sqrt{3}x-y-3\sqrt{3}=0$的距离$d=\frac{{|\sqrt{3}×2-0-3\sqrt{3}|}}{2}=\frac{{\sqrt{3}}}{2}$…(8分)
∴P到直线l的距离的最大值$M=d+r=\frac{{3\sqrt{3}}}{2}$…(10分)

点评 本题考查直线和曲线的直角坐标方程的求法,考查曲线上任意一点到直线的距离的最大值的求法,是中档题,解题时要认真审题,注意点到直线距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.复数z=$\frac{2+3i}{1+i}$(i为虚数单位),则z的共轭复数在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设矩阵$M=[{\begin{array}{l}2&0\\ 0&3\end{array}}]$,求曲线C:x2+y2=1在矩阵M-1所对应的线性变换作用下得到的曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于$\frac{40}{3}$cm3,表面积等于28+4$\sqrt{3}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,AC为⊙O的直径,E为BC的中点,延长OE与⊙O相交于点D,连结AD,DC,F为BC与AD的交点.
(Ⅰ)求证:AB•DC=AD•BF
(Ⅱ)若AD=$\sqrt{3}$CD=$\sqrt{3}$,求OF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)求PD与平面EFD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为2的菱形,且∠ABC=60°,AA1=3,AC,BD相交于点O,E为线段AD1上一点.
(1)试确定点E的位置,使得A1B∥OE;
(2)在(1)的条件下,求A1C与平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,正方体ABCD-A1B1C1D1的所有棱长都为1,M、N分别为线段BD和B1C上的两个动点.
(1)求线段MN长的最小值;
(2)当线段MN长最小时,求二面角B-MN-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.曲线C的极坐标方程是ρ=4sin(θ-$\frac{π}{6}$),直线l的参数方程是$\left\{\begin{array}{l}x=-\frac{3}{5}t+2\\ y=\frac{4}{5}t\end{array}$(t为参数).
(1)将曲线C的极坐标方程转化为直角坐标方程;
(2)设直线l与x轴的交点是M,N为曲线C上一动点,求|MN|的取值范围.

查看答案和解析>>

同步练习册答案