精英家教网 > 高中数学 > 题目详情
20.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于$\frac{40}{3}$cm3,表面积等于28+4$\sqrt{3}$cm2

分析 由已知三视图得到几何体是正方体切去两个角后的几何体,由三视图数据求体积和表面积.

解答 解:由几何体的三视图得到几何体是底面是边长为2,高为4的正方体切去两个角,如图
该几何体的体积等于 $2×2×4-2×\frac{1}{3}×\frac{1}{2}×2×2×2$=$\frac{40}{3}$cm3
表面积等于$2×4×2+2×2+2×\frac{1}{2}×4×2+2×\frac{\sqrt{3}}{4}$×$(2\sqrt{2})^{2}$
=(28+4$\sqrt{3}$)cm2
故答案为:$\frac{40}{3}$;(28+4$\sqrt{3}$).

点评 本题考查了由几何体的三视图求几何体的体积和表面积;关键是正确还原几何体.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.某几何体的三视图如图所示,其中正视图是边长为1的正方形,俯视图由两个边长为1的正方形组成,则此几何体的体积是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若集合A={x|1<x2≤5x},B={x|-2<x<2},则A∪B=(  )
A.(1,2)B.(-2,2)C.(-1,5)D.(-2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,边长为$\sqrt{2}$的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,CD=BC=$\frac{1}{2}$AB=1,点M在线段EC上.
(I)证明:平面BDM⊥平面ADEF;
(Ⅱ)若EM=2MC,求平面BDM与平面ABF所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=$|\begin{array}{l}{-x}&{3}&{1}&{3}\\{x}&{3}&{2x}&{11}\\{-1}&{x}&{0}&{4}\\{2}&{21}&{4}&{x}\end{array}|$,则f(x)中x4的系数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,AB是⊙O的直径,CB与⊙O相切于B,E为线段CB上一点,连接AC、AE,分别交⊙O于D、G两点,连接DG交CB于点F.
(Ⅰ)求证:△CDF∽△GEF;
(Ⅱ)若E为CB的中点,EG=1,GA=3,求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=3+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-4ρcosθ+1=0.
(Ⅰ)写出直线l和曲线C的直角坐标方程;
(Ⅱ)P是曲线C上任意一点,求P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,等边三角形ABC内接于圆O,以B、C为切点的圆O的两条切线交于点D,AD交圆O于点E.
(Ⅰ)证明:四边形ABDC为菱形;
(Ⅱ)若DE=2,求等边三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果cos(π+A)=-$\frac{1}{3}$,那么sin($\frac{π}{2}+A}$)的值为(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

同步练习册答案