分析 (Ⅰ)推导出AD⊥BD,BD⊥ED,BD⊥ED,由此能证明面BDM⊥面ADEF.
(Ⅱ) 在面DAB内过点D作DN⊥AB,从而DN⊥CD,以D为坐标原点,DN所在的直线为x轴,DC所在直线为y轴,DE所在直线为z轴,建立空间直角坐标系,利用向量法能求出平面BDM与平面ABF所成锐二面角的大小.
解答
证明:(Ⅰ)如图,∵DC=BC=1,DC⊥BC,∴BD=$\sqrt{2}$,
∵AD=$\sqrt{2}$,AB=2,∴AD2+BD2=AB2,
∴∠ADB=90°,∴AD⊥BD,
∵面ADEF⊥面ABCD,ED⊥AD,面ADEF∩面ABCD=AD,
∴ED⊥面ABCD,∴BD⊥ED,
∵AD∩DE=D,∴BD⊥ED,
∵AD∩DE=D,∴BD⊥面ADEF,又BD?面BDM,
∴面BDM⊥面ADEF.…(4分)
解:(Ⅱ) 在面DAB内过点D作DN⊥AB,
∵AB∥CD,∴DN⊥CD,
又∵ED⊥面ABCD,∴DN⊥ED,
以D为坐标原点,DN所在的直线为x轴,DC所在直线为y轴,DE所在直线为z轴,建立空间直角坐标系
则$B(1,1,0),C(0,1,0),E(0,0,\sqrt{2}),N(1,0,0)$ $M(0,\frac{2}{3},\frac{{\sqrt{2}}}{3})$,…(5分)
设平面BMD的法向量为$\overrightarrow{n_1}=(x,y,z)$,
∴$\left\{\begin{array}{l}\overrightarrow{n_1}•\overrightarrow{DM}=0\\ \overrightarrow{n_1}•\overrightarrow{DB}=0\end{array}\right.$,∴$\left\{\begin{array}{l}\frac{2}{3}y+\frac{{\sqrt{2}}}{3}z=0\\ x+y=0\end{array}\right.$,令x=1,得$\overrightarrow{{n}_{1}}$=(1,-1,$\sqrt{2}$),…(9分)
∵平面ABF的法向量$\overrightarrow{n_2}=(1,0,0)$,
∴cos<$\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}|•|\overrightarrow{{n}_{2}}|}$=$\frac{1}{2}$,
平面BDM与平面ABF所成锐二面角是$\frac{π}{3}$.…(12分)
点评 本题考查面面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com