分析 (Ⅰ)连接BD,证明∠C=∠EGF,∠DFC=∠EFG,即可证明:△CDF∽△GEF;
(Ⅱ)利用切割线定理,求线段CD的长.
解答
(Ⅰ)证明:连接BD,则BD⊥AD,
∵CB与⊙O相切于B,∴AB⊥CB,
∴∠C=∠ABD
∵∠AGD=∠ABD=∠EGF,
∴∠C=∠EGF,
∵∠DFC=∠EFG,
∴△CDF∽△GEF;
(Ⅱ)解:∵EG=1,GA=3,
∴由切割线定理EG•EA=EB2,得EB=2
∴AB=2$\sqrt{3}$,
∵CB=4,
∴AC=2$\sqrt{7}$,
∵CB2=CA•CA,
∴CD=$\frac{8\sqrt{7}}{7}$.
点评 本题考查四点共圆的证明,考查线段长的求法,是中档题,解题时要注意圆的性质的灵活运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com