分析 集合A={x|x2-9x-10=0}={-1,10},由A∪B=A,可得B⊆A.分类讨论:m=0时,B=∅.m≠0,B={-$\frac{1}{m}$},进而得出.
解答 解:集合A={x|x2-9x-10=0}={-1,10},
∵A∪B=A,∴B⊆A.
∵B={x|mx+1=0},m=0时,B=∅.
m≠0,B={-$\frac{1}{m}$},
∴-$\frac{1}{m}$=-1或10,解得m=1,m=$\frac{1}{10}$.
可得:m的取值集合是$\{0,1,-\frac{1}{10}\}$.
故答案为:$\{0,1,-\frac{1}{10}\}$.
点评 本题考查了方程的解法、集合的运算性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 命题“若a≥b,则a2≥b2”的逆否命题为“若a2≤b2,则a≤b” | |
| B. | “x=1”是“x2-3x+2=0”的必要不充分条件 | |
| C. | 若p∧q为假命题,则p,q均为假命题 | |
| D. | 对于命题p:?x∈R,x2+x+1>0,则¬p:?x0∈R,x02+x0+1≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | B. | $({-\frac{{\sqrt{3}}}{6},\frac{{\sqrt{3}}}{6}})$ | C. | $({-\frac{{2\sqrt{2}}}{3},\frac{{2\sqrt{2}}}{3}})$ | D. | $({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com