精英家教网 > 高中数学 > 题目详情

【题目】宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题,松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a=10,b=4,则输出的n=(
A.4
B.5
C.6
D.7

【答案】A
【解析】解:模拟程序的运行,可得 a=10,b=4,n=1,
a=15,b=8,
不满足循环的条件a≤b,执行循环体,n=2,a= ,b=16
不满足循环的条件a≤b,执行循环体,n=3,a= ,b=32
不满足循环的条件a≤b,执行循环体,n=4,a= ,b=64
满足循环的条件a≤b,退出循环,输出n的值为4.
故选:A.
【考点精析】解答此题的关键在于理解程序框图的相关知识,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正四面体ABCD中,E、F分别是棱BC和AD的中点,则直线AE和CF所成的角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosB=bcosA.
(1)判断△ABC的形状;
(2)求sin(2A+ )﹣2cos2B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ=2,在以极点为直角坐标原点O,极轴为x轴的正半轴建立的平面直角坐标系xOy中,直线l的参数方程为 (t为参数).
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)在平面直角坐标系中,设曲线C经过伸缩变换φ: 得到曲线C′,若M(x,y)为曲线C′上任意一点,求点M到直线l的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1, = + (n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=1+a (n∈N*),求数列{2nbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+ )+cos(2x+ )+sin2x
(1)求函数f(x)的单调递减区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,若f( )= ,a=2,b= ,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对定义域内R内的任意x都有f(x)=f(4﹣x),且当x≠2时,其导数f'(x)满足xf'(x)>2f'(x),若2<a<4,则(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直线上的一点,若二面角A﹣B1E﹣B的正弦值为 ,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三角形ABC中,B(﹣1,0),C(1,0),且|AB|+|AC|=4.
(Ⅰ)求动点A的轨迹M的方程;
(Ⅱ)P为轨迹M上动点,△PBC的内切圆面积为S1 , 外接圆面积为S2 , 当P在M上运动时,求 的最小值.

查看答案和解析>>

同步练习册答案