精英家教网 > 高中数学 > 题目详情
已知抛物线 y=x2-4与直线y=x+2.
(1)求两曲线的交点;
(2)求抛物线在交点处的切线方程.
分析:(1)求两曲线的交点,将两方程联立,解方程组即可;
(2)解出导数y′=2x,将坐标代入,求得切线的斜率,再用点斜式求出切线方程
解答:解:(1)由
y=x+2
y=x2-4
,(2分)
求得交点A(-2,0),B(3,5)(4分)
(2)因为y′=2x,则y′|x=-2=-4,y′|x=3=6,(8分)
所以抛物线在A,B处的切线方程分别为y=-4(x+2)与y-5=6(x-3)
即4x+y+8=0与6x-y-13=0(12分)
点评:本题考查直线与圆锥曲线的关系,解题的关键是掌握求交点的方法以及求切线方程的方法.本题涉及到求导运算,导数的几何意义,知识性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于(  )
A、3
B、4
C、3
2
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=-x2+ax+
12
与直线y=2x
(1)求证:抛物线与直线相交;
(2)求当抛物线的顶点在直线的下方时,a的取值范围;
(3)当a在(2)的取值范围内时,求抛物线截直线所得弦长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2+bx+c在其上一点(1,2)处的切线与直线y=x-2平行,则b、c的值分别为
-1、2
-1、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2+4ax-4a+3,y=x2+2ax-2a至少有一条与x轴相交,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2上有一定点A(-1,1)和两动点P、Q,当PA⊥PQ时,点Q的横坐标取值范围是(  )
A、(-∞,-3]B、[1,+∞)C、[-3,1]D、(-∞,-3]∪[1,+∞)

查看答案和解析>>

同步练习册答案