【题目】已知函数
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)证明:对于
,
在区间
上有极小值,且极小值大于0.
【答案】(1)
(2)见解析
【解析】试题分析: (1)因为
,
,曲线
在点
处的切线方程为:
,代入化简即可; (2)因为
,所以
在区间
上是单调递增函数.因为
,
, 所以
,使得
. 故
在
上单调递减,在
上单调递增, 所以
有极小值
.因为
,所以
.构造函数求导判断单调性与最值即可得证.
试题解析:(Ⅰ)
的定义域为
,
因为
,所以
,所以
.
因为
,
,
所以曲线
在点
处的切线方程为
.
(Ⅱ) 因为
,所以
在区间
上是单调递增函数.
因为
,
,
所以
,使得
.
所以
,
;
,
,
故
在
上单调递减,在
上单调递增,
所以
有极小值
.
因为
,
所以
.
设
,
,
则
,
所以
,
即
在
上单调递减,所以
,
即
,所以函数
的极小值大于0.
点睛:本题考查导数的几何意义以及函数的单调性与极值问题. 函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率
,过点P的切线方程为:
.求函数y=f(x)在点P(x0,y0)处的切线方程与求函数y=f(x)过点P(x0,y0)的切线方程意义不同,前者切线有且只有一条,且方程为y-y0=f′(x0)(x-x0),后者可能不只一条.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=bax(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).
(1)求f(x)的表达式;
(2)设函数g(x)=f(x)﹣2×3x , 求g(x+1)>g(x)时x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对
名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在
名男性驾驶员中,平均车速超过![]()
的有
人,不超过![]()
的有
人;在
名女性驾驶员中,平均车速超过![]()
的有
人,不超过![]()
的有
人.
(Ⅰ)完成下面的列联表,并判断是否有
的把握认为平均车速超过100
与性别有关;
平均车速超过 | 平均车速不超过 | 合计 | |
男性驾驶人数 | |||
女性驾驶人数 | |||
合计 |
(Ⅱ)在被调查的驾驶员中,按分层抽样的方法从平均车速不超过![]()
的人中抽取
人,再从这
人中采用简单随机抽样的方法随机抽取
人,求这
人恰好为
名男生、
名女生的概率.
参考公式与数据:
,其中
.
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在(﹣∞,+∞)上的偶函数,且在(﹣∞,0]上是增函数,设a=f(log47),b=f(log
3),c=f(21.6),则a,b,c的大小关系是( )
A.c<a<b
B.c<b<a
C.b<c<a
D.a<b<c
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合P={y|y=(
)x , x>0},Q={x|y=lg(2x﹣x2)},则(RP)∩Q为( )
A.[1,2)
B.(1,+∞)
C.[2,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线
的顶点为坐标原点O,焦点F在
轴正半轴上,准线
与圆
相切.
(Ⅰ)求抛物线
的方程;
(Ⅱ)已知直线
和抛物线
交于点
,命题
:“若直线
过定点(0,1),则
”,
请判断命题
的真假,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为
的五批疫苗,供全市所辖的
三个区市民注射,每个区均能从中任选其中一个批号的疫苗接种.
(1)求三个区注射的疫苗批号中恰好有两个区相同的概率;
(2)记
三个区选择的疫苗批号的中位数为
,求
的分布列及期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com