精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=sinx+$\sqrt{3}$cosx,x∈R.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)设函数g(x)=[f(x)]2-2,x∈[0,$\frac{π}{4}$],求g(x)的值域.

分析 (Ⅰ)利用辅助角公式化简,将已知函数解析式转化为正弦函数,根据正弦函数图象解答;
(Ⅱ)首项求得g(x)=2sin(2x+$\frac{π}{6}$),利用正弦函数图象解题.

解答 解:(Ⅰ)f(x)=sinx+$\sqrt{3}$cosx=2sin(x+$\frac{π}{3}$).
由2kπ-$\frac{π}{2}$≤x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$(k∈Z)
得:2kπ-$\frac{5π}{6}$≤x≤2kπ+$\frac{π}{6}$(k∈Z),故f(x)的单调递增区间是:[2kπ-$\frac{5π}{6}$,2kπ+$\frac{π}{6}$],k∈Z.
(Ⅱ)g(x)=[f(x)]2-2,
=4sin2(x+$\frac{π}{3}$)-2,
=4×$\frac{1}{2}$[1-cos(2x+$\frac{2π}{3}$)]-2,
=-2cos(2x+$\frac{2π}{3}$),
=2sin(2x+$\frac{π}{6}$).
∵x∈[0,$\frac{π}{4}$],
∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],
∴g(x)=2sin(2x+$\frac{π}{6}$)的最大值是1,最小值是-2.

点评 本题考查三角函数中的恒等变换应用,正弦函数图象.利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在如图所示的四棱锥S-ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E为线段BS上的一个动点.
(1)证明:DE和SC不可能垂直;
(2)当点E为线段BS的三等分点(靠近B)时,求二面角S-CD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知实数a、b,原命题:“如果a<2,那么a2<4”,写出它的逆命题、否命题、逆否命题;并分别判断四个命题的真假性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC中,$a=2,b=3,cosC=\frac{3}{5}$,此三角形的面积S等于(  )
A.$\frac{9}{5}$B.$\frac{12}{5}$C.$\frac{18}{5}$D.$\frac{24}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.偶函数f(x)的定义域为[t-4,t],则t=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+mx+n以(0,a)为切点的切线方程是2x+y-2=0
(Ⅰ)求实数m,n的值;
(Ⅱ)若方程f(x)=x2+b在[-$\frac{3}{2}$,3]上有两个不等实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设有穷数列{am}(m=1,2,3,4,…,n;n=2,3,4,…,)满足以下两个条件:
①$\sum_{i=1}^n{a_i}=0$;②$\sum_{i=1}^n{|{a_i}|}=1$;称{am}为n阶“单位数列”.
(Ⅰ)分别写出一个单调递增的3阶和4阶“单位数列”;
(Ⅱ)若某2k+1(k∈N*)阶“单位数列”是等差数列,求该数列的通项公式;
(Ⅲ)记n阶“单位数列”的前k项和为Sk(k=1,2,3,…,n),
求证:(1)$|{S_k}|≤\frac{1}{2}$;     (2)$|{\sum_{i=1}^n{\frac{a_i}{i}}}|≤\frac{1}{2}-\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥P-ABCD中,PC⊥平面ABCD,DC∥AB,DC=2,AB=4,BC=2$\sqrt{3}$,∠CBA=30°.
(1)求证:AC⊥PB;
(2)若PC=2,点M是棱PB上的点,且CM∥平面PAD,求BM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足a1=1,an+1-an=2n,则a5=(  )
A.21B.20C.11D.9

查看答案和解析>>

同步练习册答案