精英家教网 > 高中数学 > 题目详情
9.偶函数f(x)的定义域为[t-4,t],则t=2.

分析 根据偶函数的定义域关于原点对称,求得t的值.

解答 解:由于偶函数f(x)的定义域为[t-4,t],关于原点对称,故有t+t-4=0,∴t=2,
故答案为:2.

点评 本题主要考查偶函数的性质,偶函数的定义域关于原点对称,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=2sin(x+$\frac{π}{3}$)•cosx.
(1)若0≤x≤$\frac{π}{2}$,求函数f(x)的值域;
(2)设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且f(A)=$\frac{{\sqrt{3}}}{2}$,b=2,c=3,求cos(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.集合A={x|x≤1},B={x|x≥a},A∪B=R,则a的取值范围是a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.我们定义渐近线:已知曲线C,如果存在一条直线,当曲线C上任意一点M沿曲线运动时,M可无限趋近于该直线但永远达不到,那么这条直线称为这条曲线的渐近线:下列函数:①y=x${\;}^{\frac{1}{3}}$;②y=2x-1;③y=lg(x-1);④y=$\frac{x+1}{2x-1}$;其中有渐近线的函数的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义运算法则如下:a⊕b=$\root{3}{a}$+b-2,a?b=lga2-lg$\sqrt{b}$;若M=27⊕$\frac{\sqrt{2}}{2}$,N=$\frac{\sqrt{2}}{2}$?25,则M+N=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=sinx+$\sqrt{3}$cosx,x∈R.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)设函数g(x)=[f(x)]2-2,x∈[0,$\frac{π}{4}$],求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x,y满足$\left\{\begin{array}{l}{y≥x}\\{x+y≤a(a>0)}\\{x≥1}\end{array}\right.$,则$\frac{y}{x}$的最大值为3,则a的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:y=x+m(m∈R),双曲线E:$\frac{x^2}{2}-\frac{y^2}{b^2}$=1(b>0).
(1)若直线l与双曲线E的其中一条渐近线平行,求双曲线E的离心率;
(2)若直线l过双曲线的右焦点F2,与双曲线交于P、Q两点,且$\overrightarrow{FP}=\frac{1}{5}\overrightarrow{FQ}$,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若实数x,y满足约束条件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$,则$\frac{x}{y}$的取值范围是[$\frac{1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

同步练习册答案