精英家教网 > 高中数学 > 题目详情
18.已知直线l:y=x+m(m∈R),双曲线E:$\frac{x^2}{2}-\frac{y^2}{b^2}$=1(b>0).
(1)若直线l与双曲线E的其中一条渐近线平行,求双曲线E的离心率;
(2)若直线l过双曲线的右焦点F2,与双曲线交于P、Q两点,且$\overrightarrow{FP}=\frac{1}{5}\overrightarrow{FQ}$,求双曲线方程.

分析 (1)利用双曲线的渐近线与直线平行求出b,然后求出a,c即可求解双曲线的离心率.
(2)设出直线方程,联立直线与双曲线方程,通过向量相等,然后求解b,即可求解双曲线的方程.

解答 解:(1)因为双曲线的渐近线$y=±\frac{b}{a}x$$⇒\frac{b}{a}=1$,又因为$a=\sqrt{2}$,所以$b=\sqrt{2}$,
∴$e=\frac{c}{a}=\frac{{\sqrt{{a^2}+{b^2}}}}{a}=\frac{{\sqrt{2+2}}}{2}=\sqrt{2}$.
(2)F2(c,0),直线l:y=x-c,$\left\{{\begin{array}{l}{y=x-c}\\{\frac{x^2}{2}-\frac{y^2}{b^2}=1}\end{array}}\right.$,
(b2-2)y2+2cb2y+b2c2-2b2=0,所以$\left\{{\begin{array}{l}{{y_1}+{y_2}=\frac{{-2c{b^2}}}{{{b^2}-2}}}\\{{y_1}{y_2}=\frac{{{b^2}{c^2}-2{b^2}}}{{{b^2}-2}}}\end{array}}\right.$,
因为$\overrightarrow{FP}=\frac{1}{5}\overrightarrow{FQ}$,所以${y_1}=\frac{1}{5}{y_2}$,整理得:$\frac{{{c^2}{b^4}}}{{9({b^2}-2)}}=\frac{{{b^2}{c^2}-2{b^2}}}{5}$,
因为b2>0,所以c2-2=b2,$\frac{{{b^2}+2}}{{9({b^2}-2)}}=\frac{1}{5}$,所以b2=7,
所以双曲线C:$\frac{x^2}{2}-\frac{y^2}{7}=1$.

点评 本题考查双曲线的简单性质的应用,双曲线方程的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在数列{an}中,Sn是其前n项和,若Sn=n2+1,n∈N*,则an=$\left\{\begin{array}{l}{2,n=1}\\{2n-1,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.偶函数f(x)的定义域为[t-4,t],则t=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设有穷数列{am}(m=1,2,3,4,…,n;n=2,3,4,…,)满足以下两个条件:
①$\sum_{i=1}^n{a_i}=0$;②$\sum_{i=1}^n{|{a_i}|}=1$;称{am}为n阶“单位数列”.
(Ⅰ)分别写出一个单调递增的3阶和4阶“单位数列”;
(Ⅱ)若某2k+1(k∈N*)阶“单位数列”是等差数列,求该数列的通项公式;
(Ⅲ)记n阶“单位数列”的前k项和为Sk(k=1,2,3,…,n),
求证:(1)$|{S_k}|≤\frac{1}{2}$;     (2)$|{\sum_{i=1}^n{\frac{a_i}{i}}}|≤\frac{1}{2}-\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(Ⅰ)${\;}_{\;}4lg2+5lg5+lg\frac{1}{5}$
(Ⅱ)$2cos(-{870°})-\sqrt{{{(3\sqrt{3}-{π^{\frac{3}{2}}})}^2}}-\sqrt{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥P-ABCD中,PC⊥平面ABCD,DC∥AB,DC=2,AB=4,BC=2$\sqrt{3}$,∠CBA=30°.
(1)求证:AC⊥PB;
(2)若PC=2,点M是棱PB上的点,且CM∥平面PAD,求BM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形.E、F分别是AB、PD的中点.若PA=AD=3,CD=$\sqrt{6}$,
(1)求证:AF∥平面PEC;
(2)求证:AF⊥平面PCD;
(3)求平面PBC与平面ABCD所成的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆 x2+y2+2x-4y+1=0,关于直线2ax-by+2=0(a,b∈R+)对称,则$\frac{3}{a}$+$\frac{2}{b}$的最小值为$5+2\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列各对角中终边相同的角是(  )
A.$-\frac{π}{3}$和$\frac{22π}{3}$B.$-\frac{7π}{9}$和$\frac{11π}{9}$C.$\frac{20π}{3}$和$\frac{22π}{9}$D.$\frac{π}{2}$和$-\frac{π}{2}+2kπ,k∈Z$

查看答案和解析>>

同步练习册答案