6£®ÉèÓÐÇîÊýÁÐ{am}£¨m=1£¬2£¬3£¬4£¬¡­£¬n£»n=2£¬3£¬4£¬¡­£¬£©Âú×ãÒÔÏÂÁ½¸öÌõ¼þ£º
¢Ù$\sum_{i=1}^n{a_i}=0$£»¢Ú$\sum_{i=1}^n{|{a_i}|}=1$£»³Æ{am}Ϊn½×¡°µ¥Î»ÊýÁС±£®
£¨¢ñ£©·Ö±ðд³öÒ»¸öµ¥µ÷µÝÔöµÄ3½×ºÍ4½×¡°µ¥Î»ÊýÁС±£»
£¨¢ò£©Èôij2k+1£¨k¡ÊN*£©½×¡°µ¥Î»ÊýÁС±ÊǵȲîÊýÁУ¬Çó¸ÃÊýÁеÄͨÏʽ£»
£¨¢ó£©¼Çn½×¡°µ¥Î»ÊýÁС±µÄǰkÏîºÍΪSk£¨k=1£¬2£¬3£¬¡­£¬n£©£¬
ÇóÖ¤£º£¨1£©$|{S_k}|¡Ü\frac{1}{2}$£»     £¨2£©$|{\sum_{i=1}^n{\frac{a_i}{i}}}|¡Ü\frac{1}{2}-\frac{1}{2n}$£®

·ÖÎö £¨¢ñ£©½áºÏÒÑ֪ж¨Òå¼´¿Éд³ö·ûºÏÌõ¼þµÄÊýÁУ»
£¨¢ò£©Éè¸Ã2013½×¡°ÆÚ´ýÊýÁС±µÄ¹«²îΪd£¬ÓÉÌâÒâ¿ÉµÃ£¬a1+a2+a3+¡­+a2013=0£¬½áºÏµÈ²îÊýÁеÄÇóºÍ¹«Ê½¿ÉÇóa1+a2013=0£¬´Ó¶ø¿ÉÇóµÃa1007=0£¬½ø¶ø¿ÉµÃa1008=d£¬·Öd£¾0¼°d£¼0Á½ÖÖÇé¿ö¿ÉÇóͨÏʽ£»
£¨¢ó£©£¨1£©ÅжÏk=nʱ£¬$|{S_k}|¡Ü\frac{1}{2}$£¬È»ºóÖ¤Ã÷k£¼nʱ£¬ÀûÓÃÊýÁÐÇóºÍÒÔ¼°¾ø¶ÔÖµÈý½Ç²»µÈʽ֤Ã÷¼´¿É£»     
£¨2£©Í¨¹ýÊýÁÐÇóºÍ£¬ÒÔ¼°¾ø¶ÔÖµÈý½Ç²»µÈʽºÍ·ÅËõ·¨£¬ÀûÓÃÁÑÏî·¨ÇóºÍ£¬¼´¿ÉÖ¤Ã÷$|{\sum_{i=1}^n{\frac{a_i}{i}}}|¡Ü\frac{1}{2}-\frac{1}{2n}$£®

½â´ð ½â£º£¨¢ñ£©ÊýÁÐ$-\frac{1}{2}£¬0£¬\frac{1}{2}$ΪÈý½×µ¥Î»ÊýÁС­1·Ö
ÊýÁÐ$-\frac{3}{8}£¬-\frac{1}{8}£¬\frac{1}{8}£¬\frac{3}{8}$ΪËĽ׵¥Î»ÊýÁУ¬¡­..¡­..3·Ö£¨ÆäËü´ð°¸×ÃÇ鏸·Ö£©
£¨¢ò£©ÉèµÈ²îÊýÁÐa1£¬a2£¬a3£¬¡­£¬a2k+1£¨k¡Ý1£©µÄ¹«²îΪd£¬
¡ßa1+a2+a3+¡­+a2k+1=0£¬
¡à$£¨2k+1£©{a_1}+\frac{2k£¨2k+1£©d}{2}=0$£¬
¡àa1+kd=0£¬
¼´ak+1=0£¬¡àak+2=d£¬¡­4·Ö
µ±d=0ʱ£¬Ó뵥λÊýÁеÄÌõ¼þ¢Ù¢Úì¶Ü£¬¡­5·Ö
µ±d£¾0ʱ£¬¾Ýµ¥Î»ÊýÁеÄÌõ¼þ¢Ù¢ÚµÃ£º${a_{k+2}}+{a_{k+3}}+¡­+{a_{2k+1}}=\frac{1}{2}$£¬
¡à$kd+\frac{k£¨k-1£©}{2}d=\frac{1}{2}£¬¼´d=\frac{1}{k£¨k+1£©}$
ÓÉak+1=0µÃ${a_1}+k•\frac{1}{k£¨k+1£©}=0£¬¼´{a_1}=-\frac{1}{k+1}$£¬
¡à${a_n}=-\frac{1}{k+1}+£¨n-1£©\frac{1}{k£¨k+1£©}=\frac{n}{k£¨k+1£©}-\frac{1}{k}£¨n¡Ê{N^*}£¬n¡Ü2k+1£©$£®¡­7·Ö
µ±d£¼0ʱ£¬
ͬÀí¿ÉµÃ$kd+\frac{k£¨k-1£©}{2}d=-\frac{1}{2}£¬¼´d=-\frac{1}{k£¨k+1£©}$£¬
ÓÉak+1=0£¬µÃ${a_1}-k•\frac{1}{k£¨k+1£©}=0£¬¼´{a_1}=\frac{1}{k+1}$£¬
¡à${a_n}=\frac{1}{k+1}-£¨n-1£©\frac{1}{k£¨k+1£©}=-\frac{n}{k£¨k+1£©}+\frac{1}{k}£¨n¡Ê{N^*}£¬n¡Ü2n+1£©$£®¡­8·Ö
£¨¢ó£©Ö¤Ã÷£º£¨1£©µ±k=nʱ£¬ÏÔÈ»$|{S_n}|=0¡Ü\frac{1}{2}$³ÉÁ¢£»¡­9·Ö
µ±k£¼nʱ£¬¾ÝÌõ¼þ¢ÙµÃSk=a1+a2+¡­+ak=-£¨ak+1+ak+2+¡­+an£©£¬
¼´|Sk|=|a1+a2+¡­+ak|=|ak+1+ak+2+¡­+an|£¬
¡à2|Sk|=|a1+a2+¡­+ak|+|ak+1+ak+2+¡­+an|¡Ü|a1|+|a2|+¡­+|ak|+|ak+1|+|ak+2|+¡­+|an|=1£¬
¡à$|{S_k}|¡Ü\frac{1}{2}£¨k=1£¬2£¬3£¬¡­£¬n£©$£®¡­11·Ö
$£¨2£©|{\sum_{i=1}^n{\frac{a_i}{i}}}|=|{\frac{a_1}{1}+\frac{a_2}{2}+\frac{a_3}{3}+\frac{a_4}{4}+¡­+\frac{{{a_{n-1}}}}{n-1}+\frac{a_n}{n}}|$£¬
=$|{{S_1}+\frac{{{S_2}-{S_1}}}{2}+\frac{{{S_3}-{S_2}}}{3}+\frac{{{S_4}-{S_3}}}{4}+¡­+\frac{{{S_{n-1}}-{S_{n-2}}}}{n-1}+\frac{{{S_n}-{S_{n-1}}}}{n}}|$£¬
=$|{\frac{S_1}{2}+\frac{S_2}{2¡Á3}+\frac{S_3}{3¡Á4}+\frac{S_4}{4¡Á5}+¡­+\frac{{{S_{n-1}}}}{£¨n-1£©n}+\frac{S_n}{n}}|$£¬
$¡Ü|{\frac{S_1}{2}}|+|{\frac{S_2}{2¡Á3}}|+|{\frac{S_3}{3¡Á4}}|+|{\frac{S_4}{4¡Á5}}|+¡­+|{\frac{{{S_{n-1}}}}{£¨n-1£©n}}|$£¬
$¡Ü\frac{1}{2}£¨{\frac{1}{2}+\frac{1}{2¡Á3}+\frac{1}{3¡Á4}+\frac{1}{4¡Á5}+¡­+\frac{1}{£¨n-1£©n}}£©$£¬
=$\frac{1}{2}£¨{\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+¡­+\frac{1}{n-1}-\frac{1}{n}}£©$£¬
=$\frac{1}{2}-\frac{1}{2n}$£®¡­13·Ö£®

µãÆÀ ±¾Ì⿼²éÐÂÊýÁÐж¨ÒåµÄÓ¦Óã¬ÊýÁÐÇóºÍµÄ·½·¨£¬·ÅËõ·¨ÒÔ¼°¾ø¶ÔÖµÈý½Ç²»µÈʽµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶȽϴ󣬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®µÈÑü¡÷ABCÖУ¬µ×±ßBC=2$\sqrt{3}$£¬|$\overrightarrow{BA}$-t$\overrightarrow{BC}$|µÄ×îСֵΪ$\frac{1}{2}$|$\overrightarrow{AC}$|£¬Ôò¡÷ABCµÄÃæ»ýΪ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÎÒÃǶ¨Òå½¥½üÏߣºÒÑÖªÇúÏßC£¬Èç¹û´æÔÚÒ»ÌõÖ±Ïߣ¬µ±ÇúÏßCÉÏÈÎÒâÒ»µãMÑØÇúÏßÔ˶¯Ê±£¬M¿ÉÎÞÏÞÇ÷½üÓÚ¸ÃÖ±Ïßµ«ÓÀÔ¶´ï²»µ½£¬ÄÇôÕâÌõÖ±Ïß³ÆÎªÕâÌõÇúÏߵĽ¥½üÏߣºÏÂÁк¯Êý£º¢Ùy=x${\;}^{\frac{1}{3}}$£»¢Úy=2x-1£»¢Ûy=lg£¨x-1£©£»¢Üy=$\frac{x+1}{2x-1}$£»ÆäÖÐÓн¥½üÏߵĺ¯ÊýµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=sinx+$\sqrt{3}$cosx£¬x¡ÊR£®
£¨¢ñ£©Çóf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©É躯Êýg£¨x£©=[f£¨x£©]2-2£¬x¡Ê[0£¬$\frac{¦Ð}{4}$]£¬Çóg£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªx£¬yÂú×ã$\left\{\begin{array}{l}{y¡Ýx}\\{x+y¡Üa£¨a£¾0£©}\\{x¡Ý1}\end{array}\right.$£¬Ôò$\frac{y}{x}$µÄ×î´óֵΪ3£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èôcos£¨$\frac{¦Ð}{2}$+¦Õ£©=$\frac{\sqrt{3}}{2}$£¬Ôòcos£¨$\frac{3¦Ð}{2}$-¦Õ£©+sin£¨¦Õ-¦Ð£©µÄֵΪ£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®-$\sqrt{3}$C£®$\frac{\sqrt{3}}{3}$D£®-$\frac{\sqrt{3}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÖ±Ïßl£ºy=x+m£¨m¡ÊR£©£¬Ë«ÇúÏßE£º$\frac{x^2}{2}-\frac{y^2}{b^2}$=1£¨b£¾0£©£®
£¨1£©ÈôÖ±ÏßlÓëË«ÇúÏßEµÄÆäÖÐÒ»Ìõ½¥½üÏ߯½ÐУ¬ÇóË«ÇúÏßEµÄÀëÐÄÂÊ£»
£¨2£©ÈôÖ±Ïßl¹ýË«ÇúÏßµÄÓÒ½¹µãF2£¬ÓëË«ÇúÏß½»ÓÚP¡¢QÁ½µã£¬ÇÒ$\overrightarrow{FP}=\frac{1}{5}\overrightarrow{FQ}$£¬ÇóË«ÇúÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª¦ÁÊǵÚÈýÏóÏ޽ǣ¬tan£¨2¦Ð-¦Á£©=-$\frac{5}{12}$£¬Ôòsin¦ÁµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{5}$B£®-$\frac{1}{5}$C£®-$\frac{5}{13}$D£®$\frac{5}{13}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬Òª¸ø¢Ù£¬¢Ú£¬¢Û£¬¢ÜËÄ¿éÇøÓò·Ö±ðÍ¿ÉÏÎåÖÖ²»Í¬ÑÕÉ«ÖеÄijһÖÖ£¬ÔÊÐíͬһÖÖÑÕɫʹÓöà´Î£¬µ«ÏàÁÚÇøÓò±ØÐëÍ¿²»Í¬ÑÕÉ«£¬Ôò²»Í¬µÄͿɫ·½·¨ÖÖÊýΪ£¨¡¡¡¡£©
A£®320B£®160C£®96D£®60

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸