·ÖÎö £¨¢ñ£©½áºÏÒÑ֪ж¨Òå¼´¿Éд³ö·ûºÏÌõ¼þµÄÊýÁУ»
£¨¢ò£©Éè¸Ã2013½×¡°ÆÚ´ýÊýÁС±µÄ¹«²îΪd£¬ÓÉÌâÒâ¿ÉµÃ£¬a1+a2+a3+¡+a2013=0£¬½áºÏµÈ²îÊýÁеÄÇóºÍ¹«Ê½¿ÉÇóa1+a2013=0£¬´Ó¶ø¿ÉÇóµÃa1007=0£¬½ø¶ø¿ÉµÃa1008=d£¬·Öd£¾0¼°d£¼0Á½ÖÖÇé¿ö¿ÉÇóͨÏʽ£»
£¨¢ó£©£¨1£©ÅжÏk=nʱ£¬$|{S_k}|¡Ü\frac{1}{2}$£¬È»ºóÖ¤Ã÷k£¼nʱ£¬ÀûÓÃÊýÁÐÇóºÍÒÔ¼°¾ø¶ÔÖµÈý½Ç²»µÈʽ֤Ã÷¼´¿É£»
£¨2£©Í¨¹ýÊýÁÐÇóºÍ£¬ÒÔ¼°¾ø¶ÔÖµÈý½Ç²»µÈʽºÍ·ÅËõ·¨£¬ÀûÓÃÁÑÏî·¨ÇóºÍ£¬¼´¿ÉÖ¤Ã÷$|{\sum_{i=1}^n{\frac{a_i}{i}}}|¡Ü\frac{1}{2}-\frac{1}{2n}$£®
½â´ð ½â£º£¨¢ñ£©ÊýÁÐ$-\frac{1}{2}£¬0£¬\frac{1}{2}$ΪÈý½×µ¥Î»ÊýÁС1·Ö
ÊýÁÐ$-\frac{3}{8}£¬-\frac{1}{8}£¬\frac{1}{8}£¬\frac{3}{8}$ΪËĽ׵¥Î»ÊýÁУ¬¡..¡..3·Ö£¨ÆäËü´ð°¸×ÃÇ鏸·Ö£©
£¨¢ò£©ÉèµÈ²îÊýÁÐa1£¬a2£¬a3£¬¡£¬a2k+1£¨k¡Ý1£©µÄ¹«²îΪd£¬
¡ßa1+a2+a3+¡+a2k+1=0£¬
¡à$£¨2k+1£©{a_1}+\frac{2k£¨2k+1£©d}{2}=0$£¬
¡àa1+kd=0£¬
¼´ak+1=0£¬¡àak+2=d£¬¡4·Ö
µ±d=0ʱ£¬Ó뵥λÊýÁеÄÌõ¼þ¢Ù¢Úì¶Ü£¬¡5·Ö
µ±d£¾0ʱ£¬¾Ýµ¥Î»ÊýÁеÄÌõ¼þ¢Ù¢ÚµÃ£º${a_{k+2}}+{a_{k+3}}+¡+{a_{2k+1}}=\frac{1}{2}$£¬
¡à$kd+\frac{k£¨k-1£©}{2}d=\frac{1}{2}£¬¼´d=\frac{1}{k£¨k+1£©}$
ÓÉak+1=0µÃ${a_1}+k•\frac{1}{k£¨k+1£©}=0£¬¼´{a_1}=-\frac{1}{k+1}$£¬
¡à${a_n}=-\frac{1}{k+1}+£¨n-1£©\frac{1}{k£¨k+1£©}=\frac{n}{k£¨k+1£©}-\frac{1}{k}£¨n¡Ê{N^*}£¬n¡Ü2k+1£©$£®¡7·Ö
µ±d£¼0ʱ£¬
ͬÀí¿ÉµÃ$kd+\frac{k£¨k-1£©}{2}d=-\frac{1}{2}£¬¼´d=-\frac{1}{k£¨k+1£©}$£¬
ÓÉak+1=0£¬µÃ${a_1}-k•\frac{1}{k£¨k+1£©}=0£¬¼´{a_1}=\frac{1}{k+1}$£¬
¡à${a_n}=\frac{1}{k+1}-£¨n-1£©\frac{1}{k£¨k+1£©}=-\frac{n}{k£¨k+1£©}+\frac{1}{k}£¨n¡Ê{N^*}£¬n¡Ü2n+1£©$£®¡8·Ö
£¨¢ó£©Ö¤Ã÷£º£¨1£©µ±k=nʱ£¬ÏÔÈ»$|{S_n}|=0¡Ü\frac{1}{2}$³ÉÁ¢£»¡9·Ö
µ±k£¼nʱ£¬¾ÝÌõ¼þ¢ÙµÃSk=a1+a2+¡+ak=-£¨ak+1+ak+2+¡+an£©£¬
¼´|Sk|=|a1+a2+¡+ak|=|ak+1+ak+2+¡+an|£¬
¡à2|Sk|=|a1+a2+¡+ak|+|ak+1+ak+2+¡+an|¡Ü|a1|+|a2|+¡+|ak|+|ak+1|+|ak+2|+¡+|an|=1£¬
¡à$|{S_k}|¡Ü\frac{1}{2}£¨k=1£¬2£¬3£¬¡£¬n£©$£®¡11·Ö
$£¨2£©|{\sum_{i=1}^n{\frac{a_i}{i}}}|=|{\frac{a_1}{1}+\frac{a_2}{2}+\frac{a_3}{3}+\frac{a_4}{4}+¡+\frac{{{a_{n-1}}}}{n-1}+\frac{a_n}{n}}|$£¬
=$|{{S_1}+\frac{{{S_2}-{S_1}}}{2}+\frac{{{S_3}-{S_2}}}{3}+\frac{{{S_4}-{S_3}}}{4}+¡+\frac{{{S_{n-1}}-{S_{n-2}}}}{n-1}+\frac{{{S_n}-{S_{n-1}}}}{n}}|$£¬
=$|{\frac{S_1}{2}+\frac{S_2}{2¡Á3}+\frac{S_3}{3¡Á4}+\frac{S_4}{4¡Á5}+¡+\frac{{{S_{n-1}}}}{£¨n-1£©n}+\frac{S_n}{n}}|$£¬
$¡Ü|{\frac{S_1}{2}}|+|{\frac{S_2}{2¡Á3}}|+|{\frac{S_3}{3¡Á4}}|+|{\frac{S_4}{4¡Á5}}|+¡+|{\frac{{{S_{n-1}}}}{£¨n-1£©n}}|$£¬
$¡Ü\frac{1}{2}£¨{\frac{1}{2}+\frac{1}{2¡Á3}+\frac{1}{3¡Á4}+\frac{1}{4¡Á5}+¡+\frac{1}{£¨n-1£©n}}£©$£¬
=$\frac{1}{2}£¨{\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+¡+\frac{1}{n-1}-\frac{1}{n}}£©$£¬
=$\frac{1}{2}-\frac{1}{2n}$£®¡13·Ö£®
µãÆÀ ±¾Ì⿼²éÐÂÊýÁÐж¨ÒåµÄÓ¦Óã¬ÊýÁÐÇóºÍµÄ·½·¨£¬·ÅËõ·¨ÒÔ¼°¾ø¶ÔÖµÈý½Ç²»µÈʽµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶȽϴ󣬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{3}$ | B£® | -$\sqrt{3}$ | C£® | $\frac{\sqrt{3}}{3}$ | D£® | -$\frac{\sqrt{3}}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{5}$ | B£® | -$\frac{1}{5}$ | C£® | -$\frac{5}{13}$ | D£® | $\frac{5}{13}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 320 | B£® | 160 | C£® | 96 | D£® | 60 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com