分析 由题可知,可以直接建立空间直角坐标线证明位置关系和计算角.
(1)只要向量$\overrightarrow{DE}$$•\overrightarrow{SC}≠0$恒成立,即可说明DE和SC不可能垂直;也可用反证法:假设DE与SC垂直,即$\overrightarrow{DE}•\overrightarrow{SC}=0$,找出矛盾.
(2)求出平面SCD和平面CDE的法向量,用向量角的余弦值来反应二面角的大小.
解答
解:(1)∵SA⊥底面ABCD,∠DAB=90°,
∴AB、AD、AS两两垂直.故以A为原点,建立空间直角坐标系,如图 …(1分)
则S(0,0,a),C(a,a,0),D(0,3a,0)(a>0),
∵SA=AB=a且SA⊥AB,
∴设E(x,0,a-x)其中0≤x≤a,…(2分)
∴$\overrightarrow{DE}=(x,-3a,a-x)$,$\overrightarrow{SC}=(a,a,-a)$,
假设DE和SC垂直,则$\overrightarrow{DE}•\overrightarrow{SC}=0$,…(4分)
即ax-3a2-a2+ax=2ax-4a2=0,解得x=2a,…(5分)
这与0≤x≤a矛盾,假设不成立,所以DE和SC不可能垂直 …(6分)
(2)∵E为线段BS的三等分点(靠近B),∴$E(\frac{2}{3}a,0,\frac{1}{3}a)$.
设平面SCD的一个法向量是$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$,
∵$\overrightarrow{CD}=(-a,2a,0)$,$\overrightarrow{SD}=(0,3a,-a)$,
∴$\left\{\begin{array}{l}\overrightarrow{n_1}•\overrightarrow{CD}=0\\ \overrightarrow{n_1}•\overrightarrow{SD}=0\end{array}\right.$,即$\left\{\begin{array}{l}-a{x_1}+2a{y_1}=0\\ 3a{y_1}-a{z_1}=0\end{array}\right.$,即$\left\{\begin{array}{l}{x_1}=2{y_1}\\{z_1}=3{y_1}\end{array}\right.$,
取$\overrightarrow{n_1}=(2,1,3)$,…(8分)
设平面CDE的一个法向量是$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$,
∵$\overrightarrow{CD}=(-a,2a,0)$,$\overrightarrow{DE}=(\frac{2}{3}a,-3a,\frac{1}{3}a)$,
∴$\left\{\begin{array}{l}\overrightarrow{n_2}•\overrightarrow{CD}=0\\ \overrightarrow{n_2}•\overrightarrow{DE}=0\end{array}\right.$,即$\left\{\begin{array}{l}-a{x_2}+2a{y_2}=0\\ \frac{2}{3}a{x_2}-3a{y_2}+\frac{1}{3}a{z_2}=0\end{array}\right.$,即$\left\{\begin{array}{l}{x_2}=2{y_2}\\{z_2}=5{y_2}\end{array}\right.$,
取$\overrightarrow{n_2}=(2,1,5)$,…(10分)
设二面角S-CD-E的平面角大小为θ,由图可知θ为锐角,
∴$cosθ=|cos<\overrightarrow{n_1},\overrightarrow{n_2}>|=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|\overrightarrow{n_1}|•|\overrightarrow{n_2}|}}=\frac{4+1+15}{{\sqrt{14}•\sqrt{30}}}=\frac{{2\sqrt{105}}}{21}$,
即二面角S-CD-E的余弦值为$\frac{{2\sqrt{105}}}{21}$…(12分)
点评 考查了用空间向量法分析空间位置关系.考查了用空间向量法求法向量、二面角的大小.考查了化归思想,空间想象能力,运算能力.本题能想到用向量法是解题的关键,在处理第一问的两直线不垂直问题有一定的技巧,且各棱没有明确的数值,用字母来表示长度,运算上有一定的难度,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{12}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com