精英家教网 > 高中数学 > 题目详情
19.抛物线y=(x-1)2的对称轴是(  )
A.0B.1C.x=0D.x=1

分析 利用二次函数与抛物线的性质写出结果即可.

解答 解:抛物线y=(x-1)2=x2-2x+1开口向上,对称轴是x=1.
故选:D.

点评 本题考查二次函数的性质以及抛物线的简单性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}满足a2=0,a6+a8=-10,则a2017=(  )
A.2 014B.2 015C.-2014D.-2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC的面积是S△ABC,若角A、B、C所对的边为a,b,c,且有c2+b2-a2=4S△ABC
(1)求角A的大小;
(2)若a=$\sqrt{2}$,D为BC边上的点,且DC=$\sqrt{3}$BD,求线段AD的长取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为$\frac{3}{11}$.
优秀非优秀合计
甲班10
乙班30
合计110
(I)请完成上面的列联表;
(II)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(III)若按下面的方法从甲班优秀的学生中抽取一人;把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a=(1,-3)$.
(1)若$|\overrightarrow c|=2\sqrt{10}$,且$\overrightarrow c∥\overrightarrow a$,求$\overrightarrow c$的坐标;
(2)若$|\overrightarrow b|=\sqrt{5}$,且$(\overrightarrow a+\overrightarrow b)$与$(\overrightarrow a-2\overrightarrow b)$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=2sin3x的值域为[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若$C_{10}^x=C_{10}^2$,则正整数x的值为(  )
A.2B.8C.2或6D.2或8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,
给出下列结论:
①四面体ABCD每个面的面积相等;
②从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90° 而小于180°
③连结四面体ABCD每组对棱中点的线段相互垂直平分;
④从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长;
其中正确结论的序号是①③④.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,双曲线上一点P满足PF2⊥x轴.若|F1F2|=12,|PF2|=5则该双曲线的离心率为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案