精英家教网 > 高中数学 > 题目详情
11.执行如图所示的程序框图,输入的x,y∈R,输出的z的范围为不等式ax2+bx-2≥0(a<0)的解集,则a+b的值为(  )
A.-1B.1C.0D.2

分析 由题意可知$\left\{\begin{array}{l}{x-2≤0}\\{y≤0}\\{2x+2y-2≥0}\end{array}\right.$,其可行域如图所示,求出目标函数z=x-y的范围,即可得到ax2+bx-2≥0(a<0)的解集为(1,3),即可求出a,b的值,问题得以解决.

解答 解:由题意可知$\left\{\begin{array}{l}{x-2≤0}\\{y≤0}\\{2x+2y-2≥0}\end{array}\right.$,其可行域如图所示,
当z=x-y通过点(1,0)时有最小值,为z=1,
当z=x-y通过点(2,-1)时有最大值,z=2-(-1)=3,
则z的范围为(1,3),
则不等式ax2+bx-2≥0(a<0)的解集(1,3),
则1+3=-$\frac{b}{a}$,1×3=-$\frac{2}{a}$,
解得a=-$\frac{2}{3}$,b=$\frac{8}{3}$,
则a+b=$\frac{8}{3}$-$\frac{2}{3}$=2,
故选:D.

点评 本题截距程序框图考查了线性规划的问题,以及不等式的解集问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知实数x,y满足x2+y2+2x-2$\sqrt{3}$y=0,则$\frac{y+\sqrt{3}}{x-1}$的最大值是$-\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=cosx+cos(x-$\frac{π}{3}$)的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若P{(x,y)|x>-1},Q={(x,y)|y≤1},则P∩Q对应的图形是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.把多项式4a2-4ab-4ac+b2+c2+2bc分解因式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标xOy中,动点P(x,y)到定直线l:x=-2的距离比到定点F(1,0)的距离大1,D(a,0)是x轴上一动点.
(1)求动点P的轨迹方程G;
(2)当a=-1时,过D作直线,交动点P的轨迹于M(x1,y1)、N(x2,y2)两点,证明:y1y2为定值;
(3)设A(4,y1)是轨迹方程G在x轴上方的点,过A作AB垂直于y轴,垂足为B,C为OB的中点,以C为圆心,CO为半径作圆C1,讨论直线AD与圆C1的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.点F1(0,-$\sqrt{2}$),F2(0,$\sqrt{2}$),动点M到点F2的距离是4,线段MF1的中垂线交MF2于点P.
(1)当点M变化时,求动点P的轨迹G的方程;
(2)若斜率为$\sqrt{2}$的动直线l与轨迹G相交于A、B两点,Q(1,$\sqrt{2}$)为定点,求△QAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,有一张长为16,宽为8的矩形纸片ABCD,以EF为折痕(E在边AB上,F在边BC或CD上),使每次折叠后点B都落在AD边上,此时将B记为B′,过B′作B′T∥CD交EF于T点,则T点的轨迹所在的曲线是(  )
A.双曲线的一支B.椭圆C.抛物线D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,已知圆C1:(x-4)2+(y-5)2=4和圆C2:(x+3)2+(y-1)2=4
(1)若直线l1过点A(2,0),且与圆C1相切,求直线l1的方程;
(2)若直线l2过点B(4,0),且被圆C2截得的弦长为2$\sqrt{3}$,求直线l2的方程;
(3)直线l3的方程是x=$\frac{5}{2}$,证明:直线l3上存在点P,满足过P的无穷多对互相垂直的l4和l5,它们分别与圆C1和圆C2相交,且直线l4被圆C1截得的弦长与直线l5被圆C2截得的弦长相等.

查看答案和解析>>

同步练习册答案