精英家教网 > 高中数学 > 题目详情
6.把多项式4a2-4ab-4ac+b2+c2+2bc分解因式.

分析 分组变形利用完全平方公式即可得出.

解答 解:4a2-4ab-4ac+b2+c2+2bc=(2a)2-4a(b+c)+(b+c)2
=(2a-b-c)2

点评 本题考查了完全平方公式、因式分解方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知在三棱锥P-ABC中,PA⊥面ABC,PC⊥AB,若三棱锥P-ABC的外接球的半径是3,S=S△ABC+S△ABP+S△ACP,则S的最大值是(  )
A.36B.28C.26D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等比数列 {an}中,已知 a1=3,公比 q≠1,等差数列{bn} 满足b1=a1,b4=a2,b13=a3
(1)求数列{an}与 {bn}的通项公式;
(2)记 cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.圆心为点(-1,0)且与y轴相切的圆的标准方程为(x+1)2+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设f($\frac{x}{x+1}$)=x2-x+1,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.执行如图所示的程序框图,输入的x,y∈R,输出的z的范围为不等式ax2+bx-2≥0(a<0)的解集,则a+b的值为(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,离心率为$\frac{{\sqrt{3}}}{2}$,椭圆上的点到直线$x=-\frac{{5\sqrt{5}}}{2}$的距离的最大值为$\frac{{9\sqrt{5}}}{2}$,倾斜角为45°的直线l交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)已知点M(4,1),当直线l不过点M时,求证:直线MA,MB与x轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线y2=2px(p>0)与圆(x-2)2+y2=3在x轴上方交于A、B两点,线段AB的中点在y=x上,则p=(  )
A.$\frac{7+\sqrt{17}}{4}$B.$\frac{7-\sqrt{17}}{4}$C.$\frac{7+\sqrt{17}}{4}$或$\frac{7-\sqrt{17}}{4}$D.$\frac{7-2\sqrt{17}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线2ax+3by=$\sqrt{2}$与圆x2+y2=16交于A,B两点,且△AOB为直角三角形,其中O为坐标原点,则4a+12b的最大值为$\sqrt{5}$.

查看答案和解析>>

同步练习册答案