精英家教网 > 高中数学 > 题目详情
2.已知直线2ax+3by=$\sqrt{2}$与圆x2+y2=16交于A,B两点,且△AOB为直角三角形,其中O为坐标原点,则4a+12b的最大值为$\sqrt{5}$.

分析 由直线2ax+3by=$\sqrt{2}$与圆x2+y2=16相交于A,B两点,且△AOB为直角三角形,可得|AB|=$4\sqrt{2}$,圆心O(0,0)到直线2ax+3by=$\sqrt{2}$的距离d=$2\sqrt{2}$,由点到直线的距离公式列式得到a,b的关系,然后利用三角代换求得4a+12b的最大值.

解答 解:∵直线2ax+3by=$\sqrt{2}$与圆x2+y2=16相交于A,B两点,且△AOB为直角三角形,∴|AB|=$4\sqrt{2}$.
∴圆心O(0,0)到直线2ax+3by=$\sqrt{2}$的距离d=$\frac{|-\sqrt{2}|}{\sqrt{4{a}^{2}+9{b}^{2}}}=2\sqrt{2}$,化为4(4a2+9b2)=1.
令4a=cosθ,6b=sinθ,得4a+12b=2sinθ+cosθ=$\sqrt{5}sin(θ+φ)$(tanφ=$\frac{1}{2}$).
∴4a+12b的最大值为$\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查了直线与圆相交问题,考查点到直线的距离公式的应用,训练了利用三角代换求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.把多项式4a2-4ab-4ac+b2+c2+2bc分解因式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=-4,an+1=2an+2(n+1),n∈N*
(1)设bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的通项公式;
(2)记cn=an+3n+4(n∈N*),求证:$\frac{2}{{c}_{1}}$+$\frac{2}{{c}_{2}}$+…+$\frac{2}{{c}_{n}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x2+y2=1,且y≥0,求x+y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断直线x+y一3=0与圆(x-1)2+y2=1的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,已知圆C1:(x-4)2+(y-5)2=4和圆C2:(x+3)2+(y-1)2=4
(1)若直线l1过点A(2,0),且与圆C1相切,求直线l1的方程;
(2)若直线l2过点B(4,0),且被圆C2截得的弦长为2$\sqrt{3}$,求直线l2的方程;
(3)直线l3的方程是x=$\frac{5}{2}$,证明:直线l3上存在点P,满足过P的无穷多对互相垂直的l4和l5,它们分别与圆C1和圆C2相交,且直线l4被圆C1截得的弦长与直线l5被圆C2截得的弦长相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C过点A(2,-1),B(0,-3),且圆心在直线y=-2x上
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C的切线在x轴和y轴上的截距相等,且截距不为零,求此切线的方程;
(Ⅲ)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值时的P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设知函数f(x)=$\frac{1}{x}$-x+alnx(a∈R)(e=2.71828…是自然对数的底数).
(Ⅰ)若函数f(x)在点(1,f(1))处的切线为y=0,求实数a的值;
(Ⅱ)若函数f(x)在定义域上不单调,求a的取值范围;
(Ⅲ)设函数f(x)的两个极值点为x1和x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k,是否存在a,使得k≤$\frac{2e}{{{e^2}-1}}$a-2?若存在,求出a的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知0<α<π,且sinα•cosα=-$\frac{60}{169}$,则sinα-cosα=$\frac{17}{13}$.

查看答案和解析>>

同步练习册答案