·ÖÎö £¨¢ñ£©Èôº¯Êýf£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßΪy=0£¬¿ÉµÃf'£¨1£©=0£¬¼´¿ÉÇóʵÊýaµÄÖµ£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÉϲ»µ¥µ÷£¬·ÖÀàÌÖÂÛ£¬½áºÏ¶þ´Îº¯ÊýµÄÐÔÖÊÇóaµÄȡֵ·¶Î§£»
£¨¢ó£©Èô$k¡Ü\frac{2e}{{{e^2}-1}}a-2$£¬Ôò$\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}¡Ü\frac{2e}{{{e^2}-1}}$£¬ÓÉ£¨¢ñ£©Öª£¬²»·ÁÉèx1¡Ê£¨0£¬1£©£¬x2¡Ê£¨1£¬+¡Þ£©ÇÒÓÐx1•x2=1£¬ÔòµÃx1-x2¡Ü$\frac{{e}^{2}-1}{2e}$£¨lnx1-lnx2£©£¬¼´$\frac{1}{{x}_{2}}$-x2+$\frac{{e}^{2}-1}{2e}$lnx2¡Ü0£¬x2¡Ê£¨1£¬+¡Þ£©£¬¹¹Ô캯Êý£¬¼´¿ÉÇó³öaµÄȡֵ¼¯ºÏ£®
½â´ð ½â£º£¨¢ñ£©f£¨x£©µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬²¢Çóµ¼$f'£¨x£©=-\frac{1}{x^2}-1+\frac{a}{x}=-\frac{{{x^2}-ax+1}}{x^2}$£¬
¡àf'£¨1£©=0£¬µÃa=2£»
£¨¢ò£©f£¨x£©µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬²¢Çóµ¼$f'£¨x£©=-\frac{1}{x^2}-1+\frac{a}{x}=-\frac{{{x^2}-ax+1}}{x^2}$£¬
Áîg£¨x£©=x2-ax+1£¬ÆäÅбðʽ¡÷=a2-4£¬ÓÉÒÑÖª±ØÓС÷£¾0£¬¼´a£¼-2»òa£¾2£»
¢Ùµ±a£¼-2ʱ£¬g£¨x£©µÄ¶Ô³ÆÖá$x=\frac{a}{2}£¼1$ÇÒg£¨0£©=1£¾0£¬Ôòµ±x¡Ê£¨0£¬+¡Þ£©Ê±£¬g£¨x£©£¾0£¬
¼´f¡ä£¨x£©£¼0£¬¹Êf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬²»ºÏÌâÒ⣻
¢Úµ±a£¾2ʱ£¬g£¨x£©µÄ¶Ô³ÆÖá$x=\frac{a}{2}£¾1$ÇÒg£¨0£©=1£¾0£¬Ôò·½³Ìg£¨x£©=0ÓÐÁ½¸ö²»µÈx1ºÍx2£¬ÇÒx1¡Ê£¨0£¬1£©£¬x2¡Ê£¨1£¬+¡Þ£©£¬x1•x2=1£¬
µ±x¡Ê£¨0£¬x1£©£¬x¡Ê£¨x2£¬+¡Þ£©Ê±£¬f¡ä£¨x£©£¼0£»µ±x¡Ê£¨x1£¬x2£©Ê±£¬f¡ä£¨x£©£¾0£¬
¼´f£¨x£©ÔÚ£¨0£¬x1£©£¬£¨x2£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»ÔÚ£¨x1£¬x2£©Éϵ¥µ÷µÝÔö£»
×ÛÉÏ¿ÉÖª£¬aµÄȡֵ·¶Î§Îª£¨2£¬+¡Þ£©£»
£¨¢ó£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄa£¬ÓÉ£¨1£©Öªa£¾2£®
ÒòΪ$f£¨{x_1}£©-f£¨{x_2}£©=\frac{{{x_2}-{x_1}}}{{{x_1}{x_2}}}+£¨{x_2}-{x_1}£©+a£¨ln{x_1}-ln{x_2}£©$£¬
ËùÒÔ$k=\frac{{f£¨{x_1}£©-f£¨{x_2}£©}}{{{x_1}-{x_2}}}=-\frac{1}{{{x_1}{x_2}}}-1+a\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}$£¬
Èô$k¡Ü\frac{2e}{{{e^2}-1}}a-2$£¬Ôò$\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}¡Ü\frac{2e}{{{e^2}-1}}$£¬
ÓÉ£¨1£©Öª£¬²»·ÁÉèx1¡Ê£¨0£¬1£©£¬x2¡Ê£¨1£¬+¡Þ£©ÇÒÓÐx1•x2=1£¬
ÔòµÃx1-x2¡Ü$\frac{{e}^{2}-1}{2e}$£¨lnx1-lnx2£©£¬¼´$\frac{1}{{x}_{2}}$-x2+$\frac{{e}^{2}-1}{2e}$lnx2¡Ü0£¬x2¡Ê£¨1£¬+¡Þ£© ¡£¨*£©
ÉèF£¨x£©=$\frac{1}{x}$-x+$\frac{{e}^{2}-1}{e}$lnx£¨x£¾1£©£¬
²¢¼Çx1¡ä=$\frac{1}{2}$[$\frac{{e}^{2}-1}{2e}$-$\sqrt{£¨\frac{{e}^{2}-1}{2e}£©^{2}-4}$]£¬x2¡ä=$\frac{1}{2}$[$\frac{{e}^{2}-1}{2e}$+$\sqrt{£¨\frac{{e}^{2}-1}{2e}£©^{2}-4}$]£¬
ÔòÓÉ£¨1£©¢ÚÖª£¬F£¨x£©ÔÚ$£¨1£¬x_2^/£©$Éϵ¥µ÷µÝÔö£¬ÔÚ$£¨x_2^/£¬+¡Þ£©$Éϵ¥µ÷µÝ¼õ£¬ÇÒ$0£¼x_1^/£¼1£¼x_2^/£¼e$£¬
ÓÖF£¨1£©=F£¨e£©=0£¬ËùÒÔµ±x¡Ê£¨1£¬e£©Ê±£¬F£¨x£©£¾0£»µ±x¡Ê£¨e£¬+¡Þ£©Ê±£¬F£¨x£©£¼0£¬
ÓÉ·½³Ì£¨*£©Öª£¬F£¨x2£©¡Ü0£¬¹ÊÓÐx2¡Ýe£¬
ÓÖÓÉ£¨1£©Öª$g£¨{x_2}£©=x_2^2-a{x_2}+1=0$£¬Öª$a={x_2}+\frac{1}{x_2}¡Ýe+\frac{1}{e}$£¨¡ß$y=x+\frac{1}{x}$ÔÚ[e+¡Þ£©Éϵ¥µ÷µÝÔö£©£¬
ÓÖa£¾2£¬Òò´ËaµÄȡֵ¼¯ºÏÊÇ$\{a|a¡Ýe+\frac{1}{e}\}$£®
µãÆÀ ±¾Ì⿼²éµ¼Êý֪ʶµÄ×ÛºÏÔËÓ㬿¼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壬¿¼²éº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{7+\sqrt{17}}{4}$ | B£® | $\frac{7-\sqrt{17}}{4}$ | C£® | $\frac{7+\sqrt{17}}{4}$»ò$\frac{7-\sqrt{17}}{4}$ | D£® | $\frac{7-2\sqrt{17}}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com