11£®ÉèÖªº¯Êýf£¨x£©=$\frac{1}{x}$-x+alnx£¨a¡ÊR£©£¨e=2.71828¡­ÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©£®
£¨¢ñ£©Èôº¯Êýf£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßΪy=0£¬ÇóʵÊýaµÄÖµ£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÉϲ»µ¥µ÷£¬ÇóaµÄȡֵ·¶Î§£»
£¨¢ó£©É躯Êýf£¨x£©µÄÁ½¸ö¼«ÖµµãΪx1ºÍx2£¬¼Ç¹ýµãA£¨x1£¬f£¨x1£©£©£¬B£¨x2£¬f£¨x2£©£©µÄÖ±ÏßµÄбÂÊΪk£¬ÊÇ·ñ´æÔÚa£¬Ê¹µÃk¡Ü$\frac{2e}{{{e^2}-1}}$a-2£¿Èô´æÔÚ£¬Çó³öaµÄȡֵ¼¯ºÏ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Èôº¯Êýf£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßΪy=0£¬¿ÉµÃf'£¨1£©=0£¬¼´¿ÉÇóʵÊýaµÄÖµ£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÉϲ»µ¥µ÷£¬·ÖÀàÌÖÂÛ£¬½áºÏ¶þ´Îº¯ÊýµÄÐÔÖÊÇóaµÄȡֵ·¶Î§£»
£¨¢ó£©Èô$k¡Ü\frac{2e}{{{e^2}-1}}a-2$£¬Ôò$\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}¡Ü\frac{2e}{{{e^2}-1}}$£¬ÓÉ£¨¢ñ£©Öª£¬²»·ÁÉèx1¡Ê£¨0£¬1£©£¬x2¡Ê£¨1£¬+¡Þ£©ÇÒÓÐx1•x2=1£¬ÔòµÃx1-x2¡Ü$\frac{{e}^{2}-1}{2e}$£¨lnx1-lnx2£©£¬¼´$\frac{1}{{x}_{2}}$-x2+$\frac{{e}^{2}-1}{2e}$lnx2¡Ü0£¬x2¡Ê£¨1£¬+¡Þ£©£¬¹¹Ô캯Êý£¬¼´¿ÉÇó³öaµÄȡֵ¼¯ºÏ£®

½â´ð ½â£º£¨¢ñ£©f£¨x£©µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬²¢Çóµ¼$f'£¨x£©=-\frac{1}{x^2}-1+\frac{a}{x}=-\frac{{{x^2}-ax+1}}{x^2}$£¬
¡àf'£¨1£©=0£¬µÃa=2£»
£¨¢ò£©f£¨x£©µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬²¢Çóµ¼$f'£¨x£©=-\frac{1}{x^2}-1+\frac{a}{x}=-\frac{{{x^2}-ax+1}}{x^2}$£¬
Áîg£¨x£©=x2-ax+1£¬ÆäÅбðʽ¡÷=a2-4£¬ÓÉÒÑÖª±ØÓС÷£¾0£¬¼´a£¼-2»òa£¾2£»
¢Ùµ±a£¼-2ʱ£¬g£¨x£©µÄ¶Ô³ÆÖá$x=\frac{a}{2}£¼1$ÇÒg£¨0£©=1£¾0£¬Ôòµ±x¡Ê£¨0£¬+¡Þ£©Ê±£¬g£¨x£©£¾0£¬
¼´f¡ä£¨x£©£¼0£¬¹Êf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬²»ºÏÌâÒ⣻
¢Úµ±a£¾2ʱ£¬g£¨x£©µÄ¶Ô³ÆÖá$x=\frac{a}{2}£¾1$ÇÒg£¨0£©=1£¾0£¬Ôò·½³Ìg£¨x£©=0ÓÐÁ½¸ö²»µÈx1ºÍx2£¬ÇÒx1¡Ê£¨0£¬1£©£¬x2¡Ê£¨1£¬+¡Þ£©£¬x1•x2=1£¬
µ±x¡Ê£¨0£¬x1£©£¬x¡Ê£¨x2£¬+¡Þ£©Ê±£¬f¡ä£¨x£©£¼0£»µ±x¡Ê£¨x1£¬x2£©Ê±£¬f¡ä£¨x£©£¾0£¬
¼´f£¨x£©ÔÚ£¨0£¬x1£©£¬£¨x2£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£»ÔÚ£¨x1£¬x2£©Éϵ¥µ÷µÝÔö£»
×ÛÉÏ¿ÉÖª£¬aµÄȡֵ·¶Î§Îª£¨2£¬+¡Þ£©£»
£¨¢ó£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄa£¬ÓÉ£¨1£©Öªa£¾2£®
ÒòΪ$f£¨{x_1}£©-f£¨{x_2}£©=\frac{{{x_2}-{x_1}}}{{{x_1}{x_2}}}+£¨{x_2}-{x_1}£©+a£¨ln{x_1}-ln{x_2}£©$£¬
ËùÒÔ$k=\frac{{f£¨{x_1}£©-f£¨{x_2}£©}}{{{x_1}-{x_2}}}=-\frac{1}{{{x_1}{x_2}}}-1+a\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}$£¬
Èô$k¡Ü\frac{2e}{{{e^2}-1}}a-2$£¬Ôò$\frac{{ln{x_1}-ln{x_2}}}{{{x_1}-{x_2}}}¡Ü\frac{2e}{{{e^2}-1}}$£¬
ÓÉ£¨1£©Öª£¬²»·ÁÉèx1¡Ê£¨0£¬1£©£¬x2¡Ê£¨1£¬+¡Þ£©ÇÒÓÐx1•x2=1£¬
ÔòµÃx1-x2¡Ü$\frac{{e}^{2}-1}{2e}$£¨lnx1-lnx2£©£¬¼´$\frac{1}{{x}_{2}}$-x2+$\frac{{e}^{2}-1}{2e}$lnx2¡Ü0£¬x2¡Ê£¨1£¬+¡Þ£© ¡­£¨*£©
ÉèF£¨x£©=$\frac{1}{x}$-x+$\frac{{e}^{2}-1}{e}$lnx£¨x£¾1£©£¬
²¢¼Çx1¡ä=$\frac{1}{2}$[$\frac{{e}^{2}-1}{2e}$-$\sqrt{£¨\frac{{e}^{2}-1}{2e}£©^{2}-4}$]£¬x2¡ä=$\frac{1}{2}$[$\frac{{e}^{2}-1}{2e}$+$\sqrt{£¨\frac{{e}^{2}-1}{2e}£©^{2}-4}$]£¬
ÔòÓÉ£¨1£©¢ÚÖª£¬F£¨x£©ÔÚ$£¨1£¬x_2^/£©$Éϵ¥µ÷µÝÔö£¬ÔÚ$£¨x_2^/£¬+¡Þ£©$Éϵ¥µ÷µÝ¼õ£¬ÇÒ$0£¼x_1^/£¼1£¼x_2^/£¼e$£¬
ÓÖF£¨1£©=F£¨e£©=0£¬ËùÒÔµ±x¡Ê£¨1£¬e£©Ê±£¬F£¨x£©£¾0£»µ±x¡Ê£¨e£¬+¡Þ£©Ê±£¬F£¨x£©£¼0£¬
ÓÉ·½³Ì£¨*£©Öª£¬F£¨x2£©¡Ü0£¬¹ÊÓÐx2¡Ýe£¬
ÓÖÓÉ£¨1£©Öª$g£¨{x_2}£©=x_2^2-a{x_2}+1=0$£¬Öª$a={x_2}+\frac{1}{x_2}¡Ýe+\frac{1}{e}$£¨¡ß$y=x+\frac{1}{x}$ÔÚ[e+¡Þ£©Éϵ¥µ÷µÝÔö£©£¬
ÓÖa£¾2£¬Òò´ËaµÄȡֵ¼¯ºÏÊÇ$\{a|a¡Ýe+\frac{1}{e}\}$£®

µãÆÀ ±¾Ì⿼²éµ¼Êý֪ʶµÄ×ÛºÏÔËÓ㬿¼²éµ¼ÊýµÄ¼¸ºÎÒâÒ壬¿¼²éº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÇúÏßy2=2px£¨p£¾0£©ÓëÔ²£¨x-2£©2+y2=3ÔÚxÖáÉÏ·½½»ÓÚA¡¢BÁ½µã£¬Ïß¶ÎABµÄÖеãÔÚy=xÉÏ£¬Ôòp=£¨¡¡¡¡£©
A£®$\frac{7+\sqrt{17}}{4}$B£®$\frac{7-\sqrt{17}}{4}$C£®$\frac{7+\sqrt{17}}{4}$»ò$\frac{7-\sqrt{17}}{4}$D£®$\frac{7-2\sqrt{17}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÖ±Ïß2ax+3by=$\sqrt{2}$ÓëÔ²x2+y2=16½»ÓÚA£¬BÁ½µã£¬ÇÒ¡÷AOBΪֱ½ÇÈý½ÇÐΣ¬ÆäÖÐOÎª×ø±êÔ­µã£¬Ôò4a+12bµÄ×î´óֵΪ$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚÈýÀâ×¶A-BCDÖУ¬AB=AD=CB=CD£¬¡ÏBAD=¡ÏBCD=90¡ã£¬ÇÒÃæABD¡ÍÃæBCD£¬¸ø³öÏÂÁнáÂÛ£º
¢ÙAC¡ÍBD£»
¢Ú¡÷ACDÊǵȱßÈý½ÇÐΣ»
¢ÛABÓëÃæBCD³É60¡ã½Ç£»
¢ÜABÓëCD³É60¡ã½Ç£®
ÆäÖÐÕýÈ·µÄÊÇ¢Ù¢Ú£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©£¬¹ýÍÖÔ²µÄÓÒ½¹µãFÈÎ×÷Ò»ÌõÖ±Ïß½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬¹ýÍÖÔ²ÖÐÐÄÈÎ×÷Ò»ÌõÖ±Ïß½»ÍÖÔ²CÓÚM£¬NÁ½µã£®
£¨¢ñ£©ÇóÖ¤£ºAMÓëANµÄбÂÊÖ®»ýΪ¶¨Öµ£»
£¨¢ò£©Èô2a•|AB|=|MN|2£¬ÊÔ̽¾¿Ö±ÏßABÓëÖ±ÏßMNµÄÇãб½ÇÖ®¼äµÄ¹ØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬Á½Ô²Ïཻ£¬¹ýÒ»½»µãAÒýÁ½Ô²µÄÖ±¾¶AC¡¢AB£¬½»Á½Ô²ÓÚE¡¢F£¬¹ýB¡¢E¼°C¡¢FµÄÖ±Ïß½»Á½Ô²ÓÚP¡¢Q¡¢R¡¢S£®ÇóÖ¤£ºP¡¢S¡¢Q¡¢RËĵ㹲Բ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®·½³Ì$\sqrt{3x+2}$-$\sqrt{3x-2}$=2µÄ½âΪx=$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬Âú×ãc=$\sqrt{3}$asinC-ccosA£®
£¨1£©Çó½ÇAµÄ´óС£»
£¨2£©ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²î²»ÎªÁ㣬Èôa1cosA=1£¬ÇÒa2£¬a4£¬a8³ÉµÈ±ÈÊýÁУ¬Çó{$\frac{4}{{a}_{n}{a}_{n+1}}$}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÈçͼËùʾ£¬Ô²OµÄÔ²ÐÄÎª×ø±êÔ­µã£¬BΪԲOÉÏÒ»µã£¬ÈôµãA×ø±êΪ£¨3£¬0£©£¬|AB|=4£¬sin¡ÏAOB=$\frac{\sqrt{15}}{4}$£®
Ç󣺣¨1£©¡÷AOBµÄÃæ»ý£»
£¨2£©ABËùÔÚµÄÖ±Ïß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸